Controlling Internal Crystallization of Li2Si2O5 Glass-Ceramics Using SnO2
DOI:
https://doi.org/10.52825/glass-europe.v3i.2593Keywords:
Glass-Ceramics, Lithium Disilicate, NucleationAbstract
The impact of adding SnO2 on the nucleation and crystallization of glasses within the SiO2-Li2O-Al2O3-K2O glass system is investigated. Minor amounts of SnO2 (0.01 mol%) yield significant differences in the crystallization sequence and microstructure of these glass-ceramics. Adding SnO2 instigates the formation of Li2SiO3 as the primary crystal phase along with Li2Si2O5 at temperatures below 600 °C. Annealing at 950 °C for 10 minutes yields glass-ceramics with Li2Si2O5 as the sole crystalline phase. However, SnO2 cannot be empirically deduced as having a direct role in nucleation. Further, the study explores the effect of SnO2 concerning crystal formation, yet its exact role and effects remain somewhat ambiguous, necessitating continued investigations. Notably, the research results in a glass-ceramic with an unique microstructure comprising up to 70 wt% comparable large Li2Si2O5 crystals yielding a fracture toughness of up to 3 MPa*m1/2 and a biaxial fracture strength significantly above 300 MPa. These characteristics warrant exploring potential applications in areas demanding materials with a robust combination of toughness and strength, such as dental prosthetics.
Downloads
References
S.D. Stookey, “Catalyzed crystallization of glass in theory and practice”, Ind. Eng. Chem., vol. 51 no. 7, pp. 805-808, July 1959, doi: https://doi.org/10.1021/ie50595a022.
W. Höland, G. H. Beall, “Alkaline and Alkaline Earth Silicates-SiO2-Li2O (Lithium Disili-cate)” in Glass-Ceramic Technology 3rd ed., Hoboken, New Jersey: Wiley, 2020, ch. 2.1, sec. 2.1.1, pp. 67-78.
J. Deubener, M. Allix, M.J. Davis, A. Duran, T. Höche, T. Honma, T. Komatsu, S. Krüger, I. Mitra, R. Müller, S. Nakane, M.J. Pascual, J.W.P. Schmelzer, E.D. Zanotto, S. Zhou, “Updated definition of glass-ceramics”, J. Non-Cryst. Solids, vol. 501, pp. 3-10, December 2018, doi: https://doi.org/10.1016/j.jnoncrysol.2018.01.033.
E.M. Levin, C.R. Robbins, H.F. McMurdie, “Phase Diagrams for Ceramists”, 3rd volume, Columbus, Ohio: The American Ceramic Society, 1964.
C. Rüssel, R. Keding, “A new explanation of the induction period observed during nuclea-tion of lithium disilicate glass”, J. Non-Cryst. Solids, vol. 328 no. 1-3, pp. 174-182, October 2003, doi: https://doi.org/10.1016/S0022-3093(03)00468-X.
J. Deubener, R. Brückner, M. Sternitzke, “Induction time analysis of nucleation and crys-tal growth in di- and metasilicate glasses”, J. Non-Cryst. Solids, vol. 163 no. 1, pp. 1-12, October 1993, doi: https://doi.org/10.1016/0022-3093(93)90638-E.
J. Deubener, “Structural aspects of volume nucleation in silicate glasses”, J. Non-Cryst. Solids, vol. 351 no. 18, pp. 1500-1511, June 2005, doi: https://doi.org/10.1016/j.jnoncrysol.2004.04.028.
T. Komatsu, T. Honma, “Nanoscale composition fluctuations and crystallization process: Case study in Li2O–SiO2-based glasses”, Int. J. Appl. Glass Sci., vol. 13 no. 4, pp. 591-609, October 2022, doi: https://doi.org/10.1111/ijag.16583.
W. Vogel, "Struktur und Kristallisation der Gläser", Leipzig, Dt. Verlag für Grundstoffin-dustrie, 1963.
J. Deubener, “Compositional onset of homogeneous nucleation in (Li, Na) disilicate glass-es”, J. Non-Cryst. Solids, vol. 274 no. 1-3, pp. 195-201, September 2000, doi: https://doi.org/10.1016/S0022-3093(00)00188-5.
W. Freiman, L.L. Hench, “Effect of crystallization on the mechanical properties of Li2O-SiO2 glass-ceramics”, J. Amer. Ceram. Soc., vol 55 no. 2, pp. 86-90, February 1972, doi: https://doi.org/10.1111/j.1151-2916.1972.tb11216.x.
G.H. Beall, “Design and properties of glass-ceramics”, Annu. Rev. Mater. Sci., vol. 22, pp. 91-119, August 1992, doi: https://doi.org/10.1146/annurev.ms.22.080192.000515.
T.J. Headley, R.E. Loehman, “Crystallization of a glass-ceramics by epitaxial growth”, J. Amer. Ceram. Soc., vol. 67 no. 9, pp. 620-625, September 1984, doi: https://doi.org/10.1111/j.1151-2916.1984.tb19606.x.
A. V. DeCeanne, L. R. Rodrigues, C. J. Wilkinson, J. C. Mauro, E. D. Zanotto, “Examining the role of nucleating agents within glass-ceramic systems”, J. Non-Cryst. Solids, vol. 591, September 2022, doi: https://doi.org/10.1016/j.jnoncrysol.2022.121714.
M. Rampf, M. Dittmer, C. Ritzberger, M. Schweiger, W. Höland, “Properties and crystalli-zation phenomena in Li2Si2O5–Ca5(PO4)3F and Li2Si2O5–Sr5(PO4)3F glass–ceramics via twofold internal crystallization”, Front. Bioeng. Biotechnol., 3;3:122, September 2015, doi: 10.3389/fbioe.2015.00122. PMID: 26389112; PMCID: PMC4558524.
M. Rampf, M. Fisch, M. Dittmer, C. Ritzberger, W. Höland, “Tailoring the thermal expan-sion of glass-ceramics by controlled twofold crystallization of Li2Si2O5 and CsAlSi5O12”, Int. J. of Appl. Glass-Sci., vol. 7 no. 3, pp. 285-294, December 2015, doi: https://doi.org/10.1111/ijag.12180.
M. Rampf, M. Dittmer, C. Ritzberger, W. Höland, “Controlled Parallel Crystallization of Lithium Disilicate and Diopside Using a Combination of Internal and Surface Nucleation”, Front. Mater., vol. 3, October 2016, doi: https://doi.org/10.3389/fmats.2016.00047.
M. Dittmer, C. Ritzberger, W. Höland, M. Rampf, “Controlled precipitation of lithium disili-cate (Li2Si2O5) and lithium niobate (LiNbO3) or lithium tantalate (LiTaO3) in glass-ceramics”, J. Europ. Cer. Soc., vol. 38 no. 1, pp. 263-269, January 2018, doi https://doi.org/10.1016/j.jeurceramsoc.2017.08.032.
M. Rampf, M. Fisch, G. Helsch, J. Deubener, C. Ritzberger, W. Höland, M. Dittmer, “Quartz-containing glass-ceramics in the SiO2–Li2O–K2O–MgO–CaO–Al2O3–P2O5 sys-tem”, Applied Glass Science, vol. 10 no. 3, pp. 330-338, July 2019, doi: https://doi.org/10.1111/ijag.13095.
P. Hing, P.W. McMillan, “The strength and fracture properties of glass-ceramics”, J. Ma-ter. Sci., vol. 8, pp. 1041-1048, July 1973, doi: https://doi.org/10.1007/BF00756636.
M.P. Borom, A.M. Turkalo, R.H. Doremus, “Strength and microstructure in lithium disili-cate glass-ceramics”, J. Amer. Ceram. Soc., vol. 58 no. 9-10, pp. 385-391, September 1975, doi: https://doi.org/10.1111/j.1151-2916.1975.tb19004.x.
J.J. Mecholsky, "Fracture mechanics analysis of glass-ceramics", In: "Advances in Ce-ramics", Columbus, Ohio: The American Ceramic Society, 1982, 4, 261-276.
G.H. Beall, "Glass-ceramics recent development and application", In: "Nucleation and Crystallization in Glasses and Liquids." Ceramic Transactions, Westerville, Ohio: The American Ceramic Society, 1993, 30, pp. 241-266.
L.M. Echeverria, "New lithium disilicate glass-ceramic", Bol. Soc. Esp. Ceram. Vidrio, vol. 5, pp. 183-188, 1992.
W. Höland, E. Apel, C. van’t Hoen, V. Rheinberger, "Studies of crystal phase formation in high-strength lithium disilicate glass-ceramics", J. Non-Cryst. Solids, vol. 352 no. 38-39, pp. 4041-4050, October 2006, doi: https://doi.org/10.1016/j.jnoncrysol.2006.06.039.
E. Apel, C. van’t Hoen, V. Rheinberger, W. Höland, "Influence of ZrO2 on the crystalliza-tion and properties of lithium disilicate glass-ceramic derived from multi-component sys-tem", J. Eur. Ceram. Soc., vol. 27 no. 2-3, pp. 1571-1577, 2007, doi: https://doi.org/10.1016/j.jeurceramsoc.2006.04.103.
Q. Fu, G.H. Beall, C.M. Smith, "Nature-inspired design of strong, tough glass-ceramics", MRS Bulletin, vol. 42, pp. 220-225, March 2017, doi: https://doi.org/10.1557/mrs.2017.31.
M.O.C. Villas-Boas, F.C. Serbena, V.O. Soares, I. Mathias, E.D. Zanotto, “Residual stress-effect on the fracture toughness of lithium disilicate glass-ceramics”, J. Amer. Ce-ram. Soc., vol. 103 no. 1, pp. 465-479, January 2020, doi: https://doi.org/10.1111/jace.16664.
W. Liao, M. Rampf, M. Dittmer, C. Coperet, W. Höland, "Nucleation and Crystal For-mation in Lithium Disilicate-Apatite Glass-Ceramic from Combined Use of X-Ray Diffrac-tion, Solid-State NMR, and Microscopy", Helvetica Chimica Acta, 102, e1800210, De-cember 2018, doi: https://doi.org/10.1002/hlca.201800210.
D. Ehrt, M. Leister, A. Matthai, “Polyvalent elements iron, tin and titanium in silicate, phos-phate and fluoride glasses and melts” Phys. Chem. Glasses, vol. 42 no. 3, pp. 231-239, June 2001.
D. Ehrt, “Redox behaviour of Sn4+/Sn2+ in alkali free aluminosilicate glasses and melts”, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, vol. 49 no. 2, pp. 68-72, April 2008.
F. D. Doenitz, G. Welsch, W. Vogel, "Zur Rolle des Zinns in Glaskeramiken des Systems MgO-AI2O3-SiO2", Silikattechnik, 35, Heft 2, 1984.
J. Zhang, J. Huang, Y. Yu, Z. Zhang, H. Bai, Y. Huang, “Effect of substitution of ZrO2 by SnO2 on crystallization and properties of environment-friendly Li2O–Al2O3–SiO2 system (LAS) glass-ceramics”, Ceramics International, vol. 48 no. 15, pp. 21355–21361, August 2022, doi: https://doi.org/10.1016/j.ceramint.2022.04.101.
M. Dressler, B. Rüdinger, J. Deubener, “Crystallization kinetics in a lithium alumosilicate glass using SnO2 and ZrO2 additives”, J. Non. Cryst. Sol., vol. 389, pp. 60-65, April 2014, doi: https://doi.org/10.1016/j.jnoncrysol.2014.02.008.
C. Thieme, K. Thieme, M. Kracker, T. Höche, C. Rüssel, ”Role of Tin Oxide as a Nucle-ating Agent with Low Solubility in BaO−SrO−ZnO−SiO2 Glasses Studied by Electron and X‑ray Microscopy”, Cryst. Growth Des., vol. 19 no.3, pp. 1815−1824, January 2019, doi: https://doi.org/10.1021/acs.cgd.8b01790.
E. C. Ziemath, B. Z. Saggioro, J. S. Fossa, “Physical properties of silicate glasses doped with SnO2”, J. Non. Cryst. Sol., vol. 351, no. 52-54, pp. 3870-3878, December 2005, doi: https://doi.org/10.1016/j.jnoncrysol.2005.10.016.
J. Zhao, Y. Wang, J. Kang, Y. Qu, G. A. Khater, S. Li, Q. Shi, Y. Yue, “Effect of SnO2 on the structure and chemical durability of the glass prepared by red mud”, J. Non. Cryst. Sol., vol. 509, pp. 54-59, April 2019, doi: https://doi.org/10.1016/j.jnoncrysol.2019.01.029.
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Markus Rampf, Marc Dittmer

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-03-17
Published 2025-05-08