Topological Modification and Elastic Softening of Sodium Borophosphate Glasses Through Substitution of Oxygen by Chlorine
DOI:
https://doi.org/10.52825/glass-europe.v3i.2611Keywords:
Ionic Glass, Oxychloride, Structure, Electrical Conductivity, Elastic PropertiesAbstract
Ionic glasses exhibit peculiar chemical formulations, atomic structures, and macroscopic properties. In particular, structure–property relationships cannot be explained using the classical network hypothesis; a standing challenge for understanding variations in ion mobility, vibrational dynamics and non-linear mixing effects. Here, we report on the substitution of oxygen by chlorine atoms in [(Na2O)0.4-x/2(NaCl)x](B2O3)0.48(P2O5)0.12 glasses up to a substitution degree of around 10 %, effectively combining the enhanced electrical conductivity of halides and the chemical durability of oxide glasses. A mechanism of chlorine introduction, specific to borophosphate glasses, is proposed. The substitution of O2– ions for Cl– ions induces polymerization of the borophosphate network and conversion of BO4 groups into BO3 groups, thereby forming Na+ and Cl– enriched regions dispersed within a sodium-poor borophosphate network. Then, the associated increase in electrical conductivity and the dramatic changes in the elastic constants can be explained within the mixed random network model.
Downloads
References
Calahoo, C.; Wondraczek, L., Ionic glasses: Structure, properties and classification. Journal of Non-Crystalline Solids: X 2020, 8, 100054.https://doi.org/10.1016/j.nocx.2020.100054 DOI: https://doi.org/10.1016/j.nocx.2020.100054
Onodera, Y.; Kohara, S.; Masai, H.; Koreeda, A.; Okamura, S.; Ohkubo, T., Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass. Nature Communications 2017, 8 (1), 15449.10.1038/ncomms15449 DOI: https://doi.org/10.1038/ncomms15449
Ujiie, S.; Inagaki, T.; Hayashi, A.; Tatsumisago, M., Conductivity of 70Li2S·30P2S5 glasses and glass–ceramics added with lithium halides. Solid State Ionics 2014, 263, 57-61.https://doi.org/10.1016/j.ssi.2014.05.002 DOI: https://doi.org/10.1016/j.ssi.2014.05.002
Kato, A.; Yamamoto, M.; Sakuda, A.; Hayashi, A.; Tatsumisago, M., Mechanical Properties of Li2S–P2S5 Glasses with Lithium Halides and Application in All-Solid-State Batteries. ACS Applied Energy Materials 2018, 1 (3), 1002-1007.10.1021/acsaem.7b00140 DOI: https://doi.org/10.1021/acsaem.7b00140
Wang, Y.; Osaka, A.; Miura, Y.; Takahashi, K., Effect of halide ions on Li+ ionic conductivity in oxyhalo-borate glasses. Journal of Materials Research 1987, 2 (5), 606-609.10.1557/JMR.1987.0606 DOI: https://doi.org/10.1557/JMR.1987.0606
Nienhuis, E. T.; Saleh, M.; Marcial, J.; Kriegsman, K.; Lonergan, J.; Lipton, A. S.; Guo, X.; McCloy, J. S., Structural characterization of ZnSO4-K2SO4-NaCl glasses. Journal of Non-Crystalline Solids 2019, 524, 119639.https://doi.org/10.1016/j.jnoncrysol.2019.119639 DOI: https://doi.org/10.1016/j.jnoncrysol.2019.119639
Sandland, T. O.; Du, L.-S.; Stebbins, J. F.; Webster, J. D., Structure of Cl-containing silicate and aluminosilicate glasses: A 35Cl MAS-NMR study. Geochimica et Cosmochimica Acta 2004, 68 (24), 5059-5069: https://doi.org/10.1016/j.gca.2004.07.017 DOI: https://doi.org/10.1016/j.gca.2004.07.017
Deb, B.; Ghosh, A., Correlation of macroscopic ion dynamics with microscopic length scale and modification of network structure in ion conducting mixed network former glasses. Europhysics Letters 2012, 97 (1), 16001.10.1209/0295-5075/97/16001 DOI: https://doi.org/10.1209/0295-5075/97/16001
Zielniok, D.; Cramer, C.; Eckert, H., Structure/Property Correlations in Ion-Conducting Mixed-Network Former Glasses: Solid-State NMR Studies of the System Na2O−B2O3−P2O5. Chemistry of Materials 2007, 19 (13), https://doi.org/10.1021/cm0628092 DOI: https://doi.org/10.1021/cm0628092
Takebe, H.; Harada, T.; Kuwabara, M., Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses. Journal of Non-Crystalline Solids 2006, 352 (6), 709-713.https://doi.org/10.1016/j.jnoncrysol.2005.11.066 DOI: https://doi.org/10.1016/j.jnoncrysol.2005.11.066
Ducel, J. F.; Videau, J. J., Physical and chemical characterizations of sodium borophosphate glasses. Materials Letters 1992, 13 (4), 271-274.https://doi.org/10.1016/0167-577X(92)90230-H DOI: https://doi.org/10.1016/0167-577X(92)90230-H
Brauer, D. S.; Möncke, D., Introduction to the Structure of Silicate, Phosphate and Borate Glasses. In Bioactive Glasses: Fundamentals, Technology and Applications, Boccaccini, A. R.; Brauer, D. S.; Hupa, L., Eds. The Royal Society of Chemistry: 2016; https://doi.org/10.1039/9781782622017-00061 DOI: https://doi.org/10.1039/9781782622017-00061
Weber, M. J., Science and technology of laser glass. Journal of Non-Crystalline Solids 1990, 123 (1), 208-222.https://doi.org/10.1016/0022-3093(90)90786-L DOI: https://doi.org/10.1016/0022-3093(90)90786-L
Şakar, E.; Alım, B.; Ertap, H.; Karabulut, M., An extensive survey on radiation protection features of novel hafnium iron-borophosphate glasses: Experimental and theoretical study. Progress in Nuclear Energy 2023, 160, 104690.https://doi.org/10.1016/j.pnucene.2023.104690 DOI: https://doi.org/10.1016/j.pnucene.2023.104690
Braunger, M. L.; Escanhoela, C. A.; Fier, I.; Walmsley, L.; Ziemath, E. C., Electrical conductivity of silicate glasses with tetravalent cations substituting Si. Journal of Non-Crystalline Solids 2012, 358 (21), 2855-2861.https://doi.org/10.1016/j.jnoncrysol.2012.07.013 DOI: https://doi.org/10.1016/j.jnoncrysol.2012.07.013
Sellappan, P.; Rouxel, T.; Celarie, F.; Becker, E.; Houizot, P.; Conradt, R., Composition dependence of indentation deformation and indentation cracking in glass. Acta Materialia 2013, 61 (16), 5949-5965.https://doi.org/10.1016/j.actamat.2013.06.034 DOI: https://doi.org/10.1016/j.actamat.2013.06.034
Saranti, A.; Koutselas, I.; Karakassides, M. A., Bioactive glasses in the system CaO–B2O3–P2O5: Preparation, structural study and in vitro evaluation. Journal of Non-Crystalline Solids 2006, 352 (5), 390-398.https://doi.org/10.1016/j.jnoncrysol.2006.01.042 DOI: https://doi.org/10.1016/j.jnoncrysol.2006.01.042
Christensen, R.; Olson, G.; Martin, S. W., Structural Studies of Mixed Glass Former 0.35Na2O + 0.65[xB2O3 + (1 – x)P2O5] Glasses by Raman and 11B and 31P Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopies. The Journal of Physical Chemistry B 2013, 117 (7), 2169-2179.10.1021/jp308494a DOI: https://doi.org/10.1021/jp308494a
Yamashita, H.; Nagata, K.; Yoshino, H.; Ono, K.; Maekawa, T., Structural studies of 30Na2O–5SiO2–65[(1−x)P2O5–xB2O3] glasses by nuclear magnetic resonance, Raman and infrared spectroscopy. Journal of Non-Crystalline Solids 1999, 248 (2), 115-126.https://doi.org/10.1016/S0022-3093(99)00241-0 DOI: https://doi.org/10.1016/S0022-3093(99)00241-0
Möncke, D.; Kamitsos, E. I.; Palles, D.; Limbach, R.; Winterstein-Beckmann, A.; Honma, T.; Yao, Z.; Rouxel, T.; Wondraczek, L., Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties. The Journal of Chemical Physics 2016, 145 (12), 124501.10.1063/1.4962323 DOI: https://doi.org/10.1063/1.4962323
Gaylord, S.; Tincher, B.; Petit, L.; Richardson, K., Viscosity properties of sodium borophosphate glasses. Materials Research Bulletin 2009, 44 (5), 1031-1035.https://doi.org/10.1016/j.materresbull.2008.11.002 DOI: https://doi.org/10.1016/j.materresbull.2008.11.002
Koudelka, L.; Mos̆ner, P., Borophosphate glasses of the ZnO–B2O3–P2O5 system. Materials Letters 2000, 42 (3), 194-199.https://doi.org/10.1016/S0167-577X(99)00183-4 DOI: https://doi.org/10.1016/S0167-577X(99)00183-4
Anastasopoulou, M.; Vasilopoulos, K. C.; Anagnostopoulos, D.; Koutselas, I.; Papayannis, D. K.; Karakassides, M. A., Structural and Theoretical Study of Strontium Borophosphate Glasses Using Raman Spectroscopy and ab Initio Molecular Orbital Method. The Journal of Physical Chemistry B 2017, 121 (17), 4610-4619.10.1021/acs.jpcb.7b01563 DOI: https://doi.org/10.1021/acs.jpcb.7b01563
Yano, T.; Kunimine, N.; Shibata, S.; Yamane, M., Structural investigation of sodium borate glasses and melts by Raman spectroscopy.: I. Quantitative evaluation of structural units. Journal of Non-Crystalline Solids 2003, 321 (3), 137-146.https://doi.org/10.1016/S0022-3093(03)00158-3 DOI: https://doi.org/10.1016/S0022-3093(03)00158-3
Mantisi, B.; Adichtchev, S.; Sirotkin, S.; Rafaelly, L.; Wondraczek, L.; Behrens, H.; Marcenat, C.; Surovtsev, N. V.; Pillonnet, A.; Duval, E.; Champagnon, B.; Mermet, A., Non-Debye normalization of the glass vibrational density of states in mildly densified silicate glasses. Journal of Physics: Condensed Matter 2010, 22 (2), 025402.10.1088/0953-8984/22/2/025402 DOI: https://doi.org/10.1088/0953-8984/22/2/025402
Zargar, R.; Russo, J.; Schall, P.; Tanaka, H.; Bonn, D., Disorder and excess modes in hard-sphere colloidal systems. Europhysics Letters 2014, 108 (3), https://doi.org/10.1209/0295-5075/108/38002 DOI: https://doi.org/10.1209/0295-5075/108/38002
Pan, Z.; Benzine, O.; Sawamura, S.; Limbach, R.; Koike, A.; Bennett, T. D.; Wilde, G.; Schirmacher, W.; Wondraczek, L., Disorder classification of the vibrational spectra of modern glasses. Physical Review B 2021, 104 (13), https://doi.org/10.1103/physrevb.104.134106 DOI: https://doi.org/10.1103/PhysRevB.104.134106
Duval, E.; Boukenter, A.; Achibat, T., Vibrational dynamics and the structure of glasses. Journal of Physics: Condensed Matter 1990, 2 (51), https://doi.org/10.1088/0953-8984/2/51/001 DOI: https://doi.org/10.1088/0953-8984/2/51/001
Le, Q. H.; Palenta, T.; Benzine, O.; Griebenow, K.; Limbach, R.; Kamitsos, E. I.; Wondraczek, L., Formation, structure and properties of fluoro-sulfo-phosphate poly-anionic glasses. Journal of Non-Crystalline Solids 2017, 477, 58-72.https://doi.org/10.1016/j.jnoncrysol.2017.09.043 DOI: https://doi.org/10.1016/j.jnoncrysol.2017.09.043
Gautam, C.; Yadav, A. K.; Singh, A. K., A Review on Infrared Spectroscopy of Borate Glasses with Effects of Different Additives. International Scholarly Research Notices 2012, 2012 (1), 428497.https://doi.org/10.5402/2012/428497 DOI: https://doi.org/10.5402/2012/428497
Hudgens, J. J.; Martin, S. W., Glass Transition and Infrared Spectra of Low-Alkali, Anhydrous Lithium Phosphate Glasses. Journal of the American Ceramic Society 1993, 76 (7), 1691-1696.https://doi.org/10.1111/j.1151-2916.1993.tb06636.x DOI: https://doi.org/10.1111/j.1151-2916.1993.tb06636.x
Abdelghany, A. M.; ElBatal, F. H.; ElBatal, H. A.; EzzElDin, F. M., Optical and FTIR structural studies of CoO-doped sodium borate, sodium silicate and sodium phosphate glasses and effects of gamma irradiation-a comparative study. Journal of Molecular Structure 2014, 1074, 503-510.https://doi.org/10.1016/j.molstruc.2014.06.011 DOI: https://doi.org/10.1016/j.molstruc.2014.06.011
Scholze, H., The Nature of Water in Glass, II. Glastech. Ber. 1959, 32 (4), 142-52
Efimov, A. M.; Kostyreva, T. y. G.; Sycheva, G. A., Water-related IR absorption spectra for alkali zinc pyrophosphate glasses. Journal of Non-Crystalline Solids 1998, 238 (1), 124-142.https://doi.org/10.1016/S0022-3093(98)00579-1 DOI: https://doi.org/10.1016/S0022-3093(98)00579-1
Petit, L.; Cardinal, T.; Videau, J. J.; Durand, E.; Canioni, L.; Martines, M.; Guyot, Y.; Boulon, G., Effect of niobium oxide introduction on erbium luminescence in borophosphate glasses. Optical Materials 2006, 28 (3), 172-180.https://doi.org/10.1016/j.optmat.2004.12.007 DOI: https://doi.org/10.1016/j.optmat.2004.12.007
Efimov, A. M.; Pogareva, V. G., Water-related IR absorption spectra for some phosphate and silicate glasses. Journal of Non-Crystalline Solids 2000, 275 (3), 189-198.https://doi.org/10.1016/S0022-3093(00)00250-7 DOI: https://doi.org/10.1016/S0022-3093(00)00250-7
Takata, M.; Acocella, J.; Tomozawa, M.; Watson, E. B., Effect of Water Content on the Electrical Conductivity of Na2O≅3SiO2 Glass. Journal of the American Ceramic Society 1981, 64 (12), 719-724.https://doi.org/10.1111/j.1151-2916.1981.tb15894.x DOI: https://doi.org/10.1111/j.1151-2916.1981.tb15894.x
Balzer, R.; Behrens, H.; Reinsch, S.; Fechtelkord, M., Structural investigation of hydrous phosphate glasses. Physics and Chemistry of Glasses - European Journal of Glass Science andTechnology Part B 2019, 60 (2), 49-61.10.13036/17533562.60.2.041 DOI: https://doi.org/10.13036/17533562.60.2.041
Stolper, E., Water in silicate glasses: An infrared spectroscopic study. Contributions to Mineralogy and Petrology 1982, 81 (1), 1-17.10.1007/BF00371154 DOI: https://doi.org/10.1007/BF00371154
Ilievski, S., Dersch, O., Kinkel, S., Maldener, J., Zouine, A., Rauch, F., Haspel, R.; Krämer, F. W., Practical IR extinction coefficients for water in commercial glasses determined by nuclear reaction analysis". Glastech. Ber 2000, 73 (2), https://doi.org/10.34657/13131
Raguenet, B.; Tricot, G.; Silly, G.; Ribes, M.; Pradel, A., Revisiting the ‘mixed glass former effect’in ultra-fast quenched borophosphate glasses by advanced 1D/2D solid state NMR. Journal of Materials Chemistry 2011, 21 (44), 17693-17704. https://doi.org/10.1039/C1JM12350E DOI: https://doi.org/10.1039/c1jm12350e
Le, Q. H.; Calahoo, C.; Xia, Y.; Buchheim, J.; Bragatto, C. B.; Wondraczek, L., Optimization of electrical conductivity in the Na2O-P2O5-AlF3-SO3 glass system. Journal of the American Ceramic Society 2020, 103 (9), 4939-4956.https://doi.org/10.1111/jace.17150 DOI: https://doi.org/10.1111/jace.17150
Chenu, S.; Werner-Zwanziger, U.; Calahoo, C.; Zwanziger, J. W., Structure and properties of NaPO3–ZnO–Nb2O5–Al2O3 glasses. Journal of Non-Crystalline Solids 2012, 358 (15), 1795-1805.https://doi.org/10.1016/j.jnoncrysol.2012.05.027 DOI: https://doi.org/10.1016/j.jnoncrysol.2012.05.027
Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.-O.; Bujoli, B.; Gan, Z.; Hoatson, G., Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry 2002, 40 (1), 70-76.https://doi.org/10.1002/mrc.984 DOI: https://doi.org/10.1002/mrc.984
Tricot, G.; Alpysbay, L.; Doumert, B. Solid State NMR: A Powerful Tool for the Characterization of Borophosphate Glasses Molecules [Online], 2020.10.3390/molecules25020428 DOI: https://doi.org/10.3390/molecules25020428
Ducel, J. F.; Videau, J. J.; Suh, K. S.; Senegas, J., Influence of calcium-hydroxyapatite on sodium borophosphate glasses 31P and 11B NMR investigations. physica status solidi (a) 1994, 144 (1), 23-30.https://doi.org/10.1002/pssa.2211440104 DOI: https://doi.org/10.1002/pssa.2211440104
Matecki, M.; Poulain, M. In Cadmium and Lead Fluorohalide Glasses, Materials Science Forum, Trans Tech Publ: 1988; pp 167-172. https://doi.org/10.4028/www.scientific.net/MSF.32-33.167 DOI: https://doi.org/10.4028/www.scientific.net/MSF.32-33.167
El-Hofy, M.; Hager, I. Z., Ionic conductivity in lithium haloborate glasses. physica status solidi (a) 2003, 199 (3), 448-456.https://doi.org/10.1002/pssa.200306670 DOI: https://doi.org/10.1002/pssa.200306670
Siwadamrongpong, S.; Koide, M.; Matusita, K., Prediction of chloride solubility in CaO–Al2O3–SiO2 glass systems. Journal of Non-Crystalline Solids 2004, 347 (1), 114-120.https://doi.org/10.1016/j.jnoncrysol.2004.07.063 DOI: https://doi.org/10.1016/j.jnoncrysol.2004.07.063
Christensen, R.; Olson, G.; Martin, S. W., Ionic Conductivity of Mixed Glass Former 0.35Na2O + 0.65[xB2O3 + (1 – x)P2O5] Glasses. The Journal of Physical Chemistry B 2013, 117 (51), 16577-16586.10.1021/jp409497z DOI: https://doi.org/10.1021/jp409497z
Malugani, J. P.; Robert, G., Conductivite ionique dans les verres LiPO3LiX (X = I, Br, Cl). Materials Research Bulletin 1979, 14 (8), 1075-1081.https://doi.org/10.1016/0025-5408(79)90075-8 DOI: https://doi.org/10.1016/0025-5408(79)90075-8
Ingram, M. D., Ionic conductivity and glass structure. Philosophical Magazine B 1989, 60 (6), 729-740.10.1080/13642818908209739 DOI: https://doi.org/10.1080/13642818908209739
Minami, T.; Shimizu, T.; Tanaka, M., Structure and ionic conductivity of glasses in the ternary systems AgX(X = I, Br or Cl)Ag2OB2O3. Solid State Ionics 1983, 9-10, 577-583.https://doi.org/10.1016/0167-2738(83)90298-9 DOI: https://doi.org/10.1016/0167-2738(83)90298-9
Nesbitt, H. W.; Henderson, G. S.; Bancroft, G. M.; Ho, R., Experimental evidence for Na coordination to bridging oxygen in Na-silicate glasses: Implications for spectroscopic studies and for the modified random network model. Journal of Non-Crystalline Solids 2015, 409, 139-148.https://doi.org/10.1016/j.jnoncrysol.2014.11.024 DOI: https://doi.org/10.1016/j.jnoncrysol.2014.11.024
Greaves, G. N., EXAFS and the structure of glass. Journal of Non-Crystalline Solids 1985, 71 (1), 203-217.https://doi.org/10.1016/0022-3093(85)90289-3 DOI: https://doi.org/10.1016/0022-3093(85)90289-3
Shannon, R. D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Foundations of Crystallography 1976, 32 (5), 751-767 https://doi.org/10.1107/S0567739476001551 DOI: https://doi.org/10.1107/S0567739476001551
Makishima, A.; Mackenzie, J. D., Direct calculation of Young's moidulus of glass. Journal of Non-Crystalline Solids 1973, 12 (1), 35-45.https://doi.org/10.1016/0022-3093(73)90053-7 DOI: https://doi.org/10.1016/0022-3093(73)90053-7
Allison, T., JANAF thermochemical tables. NIST standard reference database 1996, 13, 1453
Reed, J. J., Digitizing "The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units". J Res Natl Inst Stand Technol 2020, 125, 125007.10.6028/jres.125.007 DOI: https://doi.org/10.6028/jres.125.007
Rouxel, T., Elastic Properties and Short-to Medium-Range Order in Glasses. Journal of the American Ceramic Society 2007, 90 (10), 3019-3039.https://doi.org/10.1111/j.1551-2916.2007.01945.x DOI: https://doi.org/10.1111/j.1551-2916.2007.01945.x
Gaafar, M. S.; Marzouk, S. Y.; Zayed, H. A.; Soliman, L. I.; Serag El-Deen, A. H., Structural studies and mechanical properties of some borate glasses doped with different alkali and cobalt oxides. Current Applied Physics 2013, 13 (1), 152-158.https://doi.org/10.1016/j.cap.2012.07.007 DOI: https://doi.org/10.1016/j.cap.2012.07.007
Sidkey, M. A.; A., A. E.-M.; S., G. M.; S., A. E.-A. N.; L., A. E.-L.; and Youssof, I. M., Elastic and structural properties of vanadium–lithium–borate glasses. Philosophical Magazine 2008, 88 (11), 1705-1722.10.1080/14786430802279752 DOI: https://doi.org/10.1080/14786430802279752
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Pengzhu Zhang, Courtney Calahoo, Jiangkun Cao, Alexis Duval, Lothar Wondraczek

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-04-08
Published 2025-05-28
Funding data
-
HORIZON EUROPE European Research Council
Grant numbers 681652 -
Deutsche Forschungsgemeinschaft
Grant numbers CA2110/2 -
Carl-Zeiss-Stiftung
Grant numbers Durchbrueche 2019