Precipitation Kinetics of Nucleating Agents in LAS Glass-Ceramics by High Temperature Raman Spectroscopy
DOI:
https://doi.org/10.52825/glass-europe.v3i.2742Keywords:
Nucleating Agents, LAS Glass-Ceramics, Precipitation KineticsAbstract
The precipitation kinetics of nucleating agents in technical lithium aluminosilicate (LAS) glass-ceramics is challenging to determine in laboratory practice due to the low content of about 3 wt%. Therefore, isothermal heat treatment series in the temperature range 750–820 °C with simultaneous recording of Raman spectra were carried out, which revealed a two-fold crystallisation process. In the first stage, an increase in oxygen coordination of Ti4+ from 4 and 5 to 6 is indicated, which was assigned to a liquid-liquid phase separation, while in the second stage ordering of the short range led to crystallisation of TiO2(B) and anatase in the demixed domains. Using a sectional JMAK analysis of the temporally decoupled process, a stationary nucleation mechanism with no detectable growth is proposed for the first stage, while the second stage led to almost no change in volume fraction over time.
Downloads
References
[1] E. D. Zanotto, “A bright future for glass-ceramics”, Am. Ceram. Soc. Bul., vol. 89, pp. 19–27, 2010.
[2] W. Pannhorst, “Overview”, in: H. Bach, D. Krause (Ed.), Low Thermal Expansion Glass Ceramics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 1–12. doi: https://doi.org/10.1007/3-540-28245-9_1. DOI: https://doi.org/10.1007/3-540-28245-9_1
[3] G. H. Beall, “Design and properties of glass-ceramics”, Annu. Rev. Mater. Sci., vol. 22, pp. 91–119, 1992, doi: https://doi.org/10.1146/annurev.ms.22.080192.000515. DOI: https://doi.org/10.1146/annurev.ms.22.080192.000515
[4] J. Deubener, M. Allix, M. J. Davis, A. Duran, T. Höche, T. Honma, T. Komatsu, S. Krüger, I. Mitra, R. Müller, S. Nakane, M. J. Pascual, J. W. P. Schmelzer, E. D. Zanotto, and S. Zhou, “Updated definition of glass-ceramics”, J. Non-Cryst. Solids, vol. 501, pp. 3–10, 2018, doi: https://doi.org/10.1016/j.jnoncrysol.2018.01.033. DOI: https://doi.org/10.1016/j.jnoncrysol.2018.01.033
[5] J. Deubener, A. Zandonà, and G. Helsch, “Nomenclature of functional crystals in glass-ceramics: A recommendation based on aluminosilicate solid solutions”, J. Non-Cryst. Solids, vol. 633, art-no. 122954, 2024, doi: https://doi.org/10.1016/j.jnoncrysol.2024.122954. DOI: https://doi.org/10.1016/j.jnoncrysol.2024.122954
[6] T. Höche, M. Mäder, S. Bhattacharyya, G. S. Henderson, T. Gemming, R. Wurth, C. Rüssel, and I. Avramov, “ZrTiO4 crystallisation in nanosized liquid–liquid phase-separation droplets in glass—a quantitative XANES study”, Cryst. Eng. Commun., vol. 13, pp. 2550–2556, 2011, doi: https://doi.org/10.1039/C0CE00716A. DOI: https://doi.org/10.1039/c0ce00716a
[7] E. Kleebusch, C. Patzig, T. Höche and C. Rüssel, “Effect of the concentrations of nucleating agents ZrO2 and TiO2 on the crystallization of Li2O–Al2O3–SiO2 glass: an X-ray diffraction and TEM investigation, J. Mater. Sci., vol. 51, pp. 10127–10138, 2016, doi: https://doi.org/10.1007/s10853-016-0241-9. DOI: https://doi.org/10.1007/s10853-016-0241-9
[8] S. Bhattacharyya, T. Höche, J. R. Jinschek, I. Avramov, R. Wurth, M. Müller, and C. Rüssel, “Direct evidence of Al-Rich layers around nanosized ZrTiO4 in Glass: Putting the role of nucleation agents in perspective”, Crystal Growth & Design., vol. 10, pp. 379–385, 2010, doi: https://doi.org/10.1021/cg9009898. DOI: https://doi.org/10.1021/cg9009898
[9] E. Kleebusch, C. Patzig, T. Höche, and C. Rüssel, “The evidence of phase separation droplets in the crystallization process of a Li2O-Al2O3-SiO2 glass with TiO2 as nucleating agent – An X-ray diffraction and (S)TEM-study supported by EDX-analysis”, Ceram. Int., vol. 44, pp. 2919–2926, 2018, doi: https://doi.org/10.1016/j.ceramint.2017.11.040. DOI: https://doi.org/10.1016/j.ceramint.2017.11.040
[10] R. Donfeu Tchana, T. Pfeiffer, B. Rüdinger, and J. Deubener, “Spectroscopy study on the nucleation kinetics of ZrTiO4 in a lithium alumosilicate glass”, J. Non-Cryst. Solids, vol. 384, pp. 25–31, 2014, doi: https://doi.org/10.1016/j.jnoncrysol.2013.03.006. DOI: https://doi.org/10.1016/j.jnoncrysol.2013.03.006
[11] A. Zandonà, A. Scarani, J. Löschmann, M. R. Cicconi, F. Di Fiore, D. de Ligny, J. Deubener, A. Vona, M. Allix, and D. Di Genova, “Non-stoichiometric crystal nucleation in a spodumene glass containing TiO2 as seed former: effects on the viscosity of the residual melt”, J. Non-Cryst. Solids, vol. 619, art-no. 122563, 2023, doi: https://doi.org/10.1016/j.jnoncrysol.2023.122563. DOI: https://doi.org/10.1016/j.jnoncrysol.2023.122563
[12] D. Di Genova, A. Zandonà, and J. Deubener, “Unravelling the effect of nano-heterogeneity on the viscosity of silicate melts: Implications for glass manufacturing and volcanic eruptions”, J. Non-Cryst. Solids, vol. 545, art-no. 120248, 2020, doi: https://doi.org/10.1016/j.jnoncrysol.2020.120248. DOI: https://doi.org/10.1016/j.jnoncrysol.2020.120248
[13] D. Di Genova, R. A. Brooker, H. M. Mader, J .W. E. Drewitt, A. Longo, J. Deubener, D. R. Neuville, S. Fanara, O. Shebanova, S. Anzellini, F. Arzilli, E. C. Bamber, L. Hennet, G. La Spina, and N. Miyajima, “In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions”, Sci. Adv., vol. 6, art-no. abb0413, 2020, doi: https://doi.org/10.1126/sciadv.abb0413. DOI: https://doi.org/10.1126/sciadv.abb0413
[14] A. Scarani, A. Zandonà, F. Di Fiore, P. Valdivia, R. Putra, N. Miyajima, H. Bornhöft, A. Vona, J. Deubener, C. Romano, and D. Di Genova, “A chemical threshold controls nanocrystallization and degassing behaviour in basalt magmas”, Comm. Earth Environ., vol. 3, art-no. 284, 2022, doi: https://doi.org/10.1038/s43247-022-00615-2. DOI: https://doi.org/10.1038/s43247-022-00615-2
[15] P. Stabile, S. Sicola, G. Giuli, E. Paris, M. R. Carroll, J. Deubener, and D. Di Genova, “The effect of iron and alkali on the nanocrystal-free viscosity of volcanic melts: A combined Raman spectroscopy and DSC study”, Chem. Geol., vol. 559, art-no. 119991, 2021, doi: https://doi.org/10.1016/j.chemgeo.2020.119991. DOI: https://doi.org/10.1016/j.chemgeo.2020.119991
[16] I. P. Alekseeva, N. M. Belyaevskaya, Ya. S. Bobovich, M. Ya. Tsenter and T. I. Chu-vaeva, “Recording, interpretation, and some examples of application of Raman spectra for glass ceramics activated with titanium(IV) oxide”, Opt. Spektrosk., vol. 45, pp. 927–936, 1978.
[17] I. P. Alekseeva, N. M. Belyaevskaya, Ya. S. Bobovich, M. Ya. Tsenter and T. I. Chuvaeva,”An investigation of the crystallization of glasses of the simplest systems activated by TiO2 and ZrO2 by means of Raman spectroscopy”, Izv. Akad. Nauk SSSR, Neorg. Mater., vol. 16, pp. 732–737, 1980.
[18] I. P. Alekseeva, N. M. Belyaevskaya, Ya. S. Bobovich, M. Ya.Tsenter, and T. I. Chuvaeva, “A study on the crystallization of glasses activated with TiO2 and ZrO2”, Izv. Akad. Nauk SSSR, Neorg. Mater., vol. 16, pp. 1587–1592, 1980.
[19] I. P. Alekseeva, Ya. S. Bobovich, M.Ya. Tsenter, and T. I. Chuvaeva, “Raman spectra of glass ceramics belonging to the Li2O-Al2O3-SiO2-TiO2 system and the nature of the phases containing titanium”, J. Appl. Spectrosc., vol. 35, pp. 1008–1012, 1981, doi: https://doi.org/10.1007/BF00615796. DOI: https://doi.org/10.1007/BF00615796
[20] I. P. Alekseeva, Ya. S. Bobovich, M. Ya. Tsenter, and T. I. Chuvaeva, “Spectral features of sitallizing glasses with titanium dioxide,” J. Appl. Spectrosc., vol. 36, pp. 215–220, 1982, https://doi.org/10.1007/BF00665177 DOI: https://doi.org/10.1007/BF00665177
[21] I. P. Alekseeva, Ya. S. Bobovich, M. Ya. Tsenter and T. I. Chuvaeva, “Manifestations of the dual nature of titanium in the Raman spectra of lithia-alumina-silica glasses”, J. Appl. Spectrosc., vol. 40, pp. 83–88, 1984, doi: https://doi.org/10.1007/BF00661301 DOI: https://doi.org/10.1007/BF00661301
[22] B. Champagnon, A. Boukenter, E. Duval, C. Mai, G. Vigier, E. Rodek, “Early stages of nucleation of Zerodur glass: Very low frequency Raman scattering and small angle X-ray scattering investigations”, J. Non-Cryst. Solids, vol. 94, pp. 216–221, 1987, doi: https://doi.org/10.1016/S0022-3093(87)80291-0. DOI: https://doi.org/10.1016/S0022-3093(87)80291-0
[23] A. A. Zhilin, V. I. Petrov, M. Ya. Tsenter, and T. I., Chuvaeva, “Raman spectroscopy study of the phase decomposition process of lithium aluminosilicate glasses containing TiO2 and ZrO2”, Opt. Spectrosc., vol. 73, pp. 684–688, 1992.
[24] R. Sprengard,”Titania-activated nucleation in lithium aluminosilicate glass ceramics investigated by Raman spectroscopy”, in: H. Bach and D. Krause (Eds.), Analysis of the structure and composition of glasses and glass ceramics, Springer, Berlin Heidelberg, 1999, pp. 366–379.
[25] F. Gabel, G. Müller, F. Raether, W. Kiefer, W. Pannhorst, O. Sohr, and R. Sprengard, “Quantitative characterization of nuclei formation by Raman spectroscopy of lithium aluminosilicate glass ceramics doped with titania and zirconia”, Phys. Chem. Glasses, vol. 43C, pp. 306–310, 2002.
[26] A. Zandonà, C. Patzig, B. Rüdinger, O. Hochrein, and J. Deubener, “TiO2(B) nanocrystals in Ti-doped lithium aluminosilicate glasses”, J. Non-Cryst. Solids X, vol. 2, art-no. 100025, 2019, doi: https://doi.org/10.1016/j.nocx.2019.100025. DOI: https://doi.org/10.1016/j.nocx.2019.100025
[27] M. Dressler, B. Rüdinger, and J. Deubener, ”An in-situ high-temperature X-ray diffraction study of early stage crystallization in lithium alumosilicate glass-ceramics”, J. Am. Ceram. Soc., vol. 94, pp. 1421–1426, 2011, doi: https://doi.org/10.1111/j.1551-2916.2010.04252.x. DOI: https://doi.org/10.1111/j.1551-2916.2010.04252.x
[28] R. Jiang and D. N. P. Murthy, “Reliability modeling involving two Weibull distributions”, Reliab. Eng. Syst. Saf., vol. 47, pp. 187–198, 1995, doi: https://doi.org/10.1016/0951-8320(94)00045-P. DOI: https://doi.org/10.1016/0951-8320(94)00045-P
[29] A. Zandonà, M. Moustrous, C. Genevois, E. Veron, A. Canizares, and M. Allix, “Glass-forming ability and ZrO2 saturation limits in the magnesium aluminosilicate system”, Ceram. Inter., vol. 48, pp. 8433–8439, 2022, doi: https://doi.org/10.1016/j.ceramint.2021.12.051. DOI: https://doi.org/10.1016/j.ceramint.2021.12.051
[30] C. Lejon and L. Österlund, “Influence of phonon confinement, surface stress, and zirco-nium doping on the Raman vibrational properties of anatase TiO2 nanoparticles”, J. Raman Spectrosc., vol. 42, pp. 2026–2035, 2011, doi: https://doi.org/10.1002/jrs.2956. DOI: https://doi.org/10.1002/jrs.2956
[31] D. P. Opra, S. V. Gnedenkov, S. L. Sinebryukhov, E. I. Voit, A. A. Sokolov, E. B. Modin, A. B. Podgorbunsky, Y. V. Sushkov, and V. V. Zheleznov, “Characterization and electrochemical properties of nanostructured Zr-doped anatase TiO2 tubes synthesized by sol–gel template route”, J. Mater. Sci. Technol., vol. 33, pp. 527–534, 2017, doi: http://dx.doi.org/10.1016/j.jmst.2016.11.011. DOI: https://doi.org/10.1016/j.jmst.2016.11.011
[32] J. Deubener, Z. A. Osborne, and M. C. Weinberg, “Determination of the liquid-liquid surface energy in phase separating glasses”, J. Non-Cryst. Solids, vol. 215, pp. 252–261, 1997, doi: https://doi.org/10.1016/S0022-3093(97)00089-6. DOI: https://doi.org/10.1016/S0022-3093(97)00089-6
[33] J. O. Fritzsche, B. Rüdinger, and J. Deubener, “Slow coarsening of tetragonal zirconia nanocrystals in a phase-separated sodium borosilicate glass”, J. Non-Cryst. Solids, vol. 606, art-no. 122206, 2023, doi: https://doi.org/10.1016/j.jnoncrysol.2023.122206. DOI: https://doi.org/10.1016/j.jnoncrysol.2023.122206
[34] A. Zandonà, B. Rüdinger, and J. Deubener, “A threshold heating rate for single-stage heat treatments in glass-ceramics containing seed formers”, J. Am. Ceram. Soc., vol. 104, pp. 4433–4444, 2021, doi: https://doi.org/10.1111/jace.17822. DOI: https://doi.org/10.1111/jace.17822
[35] P. Fielitz, G. Helsch, G. Borchardt, and J. Deubener, “Al-26 and O-18 tracer diffusion in a titania-coated sodium aluminosilicate glass”, J. Non-Cryst. Solids, vol. 614, art-no. 122400, 2023, doi: https://doi.org/10.1016/j.jnoncrysol.2023.122400. DOI: https://doi.org/10.1016/j.jnoncrysol.2023.122400
[36] M. Guignard, L. Cormier, V. Montouillout, N. Menguy, D. Massiot, and A. C. Hannon, “Environment of titanium and aluminum in a magnesium aluminosilicate glass”, J. Phys. Condens. Matter, vol. 21, art-no. 375107, 2009, doi: https://doi.org/10.1088/0953-8984/21/37/375107. DOI: https://doi.org/10.1088/0953-8984/21/37/375107
[37] M. Guignard, L. Cormier, V. Montouillout, N. Menguy, and D. Massiot, “Structural fluctuations and role of Ti as nucleating agent in an aluminosilicate glass”, J. Non. Cryst. Solids, vol. 356, pp. 1368–1373, 2010, doi: https://doi.org/10.1016/j.jnoncrysol.2010.04.004. DOI: https://doi.org/10.1016/j.jnoncrysol.2010.04.004
[38] M. Dressler, B. Rüdinger, and J. Deubener, “Crystallization kinetics in a lithium alumosilicate glass using SnO2 and ZrO2 additives, J. Non-Cryst. Solids, vol. 389, pp. 60–65, 2014,doi: https://doi.org/10.1016/j.jnoncrysol.2014.02.008. DOI: https://doi.org/10.1016/j.jnoncrysol.2014.02.008
[39] L. Wondraczek, J. Deubener, H. del Pozo, and A. Habeck, “Interfacial energy in phase-separated glasses from emulsion rheology”, J. Am. Ceram. Soc., vol. 88, pp. 1673–1675, 2005, doi: https://doi.org/10.1111/j.1551-2916.2005.00325.x. DOI: https://doi.org/10.1111/j.1551-2916.2005.00325.x
[40] A. Dittmar, H. Bornhöft, and J. Deubener, “Coarsening kinetics in demixed lead borate melts”, J. Chem. Phys., vol. 138, art-no. 224502, 2013, doi: https://doi.org/10.1063/1.4808162. DOI: https://doi.org/10.1063/1.4808162
[41] D. Bouttes, O. Lambert, C. Claireaux, W. Woelffel, D. Dalmas, E. Gouillart, P. Lhuissier, L. Salvo, E. Boller, and D. Vandembroucq, “Hydrodynamic coarsening in phase-separated silicate melts”, Acta Mater.,vol. 92, pp. 233–242, 2015, doi: https://doi.org/10.1016/j.actamat.2015.03.045. DOI: https://doi.org/10.1016/j.actamat.2015.03.045
[42] P. F. James, “Kinetics of crystal nucleation in silicate glasses”, J. Non-Cryst. Solids, vol. 73, pp. 517–540, 1985, doi: https://doi.org/10.1016/0022-3093(85)90372-2. DOI: https://doi.org/10.1016/0022-3093(85)90372-2
[43] J. Deubener and M. C. Weinberg, Crystal-liquid surface energies from transient nuclea-tion, J. Non-Cryst. Solids, vol. 231, pp. 143–151, 1998, doi: https://doi.org/10.1016/S0022-3093(98)00412-8. DOI: https://doi.org/10.1016/S0022-3093(98)00412-8
[44] V. M. Fokin, E. D. Zanotto, N. S. Yuritsyn, and J. W. P. Schmelzer, “Homogeneous crystal nucleation in silicate glasses: A 40 years perspective”, J. Non-Cryst. Solids, vol. 352, pp. 2681–2714, 2006, doi: https://doi.org/10.1016/j.jnoncrysol.2006.02.074. DOI: https://doi.org/10.1016/j.jnoncrysol.2006.02.074
[45] J. Deubener, “Compositional onset of homogeneous nucleation in (Na, Li) disilicate glasses”, J. Non-Cryst. Solids, vol. 274, pp. 195–201, 2001 doi: https://doi.org/10.1016/S0022-3093(00)00188-5. DOI: https://doi.org/10.1016/S0022-3093(00)00188-5
[46] V. M. Fokin, E. D. Zanotto, and J. W. P. Schmelzer, “Homogeneous nucleation versus glass transition temperature of silicate glasses”, J. Non-Cryst. Solids, vol. 321, pp. 52–65, 2003, doi: https://doi.org/10.1016/S0022-3093(03)00089-9. DOI: https://doi.org/10.1016/S0022-3093(03)00089-9
[47] L. Cormier, “Nucleation in glasses – new experimental findings and recent theories, Proc. Mater. Sci., vol. 7, pp. 60–71, 2014, doi: https://doi.org/10.1016/j.mspro.2014.10.009. DOI: https://doi.org/10.1016/j.mspro.2014.10.009
[48] P. G. Vekilov, “Dense liquid precursor for the nucleation of ordered solid phases from solution”, Cryst. Growth Des., vol. 4, pp. 671-685, 2004, doi: https://doi.org/10.1021/cg049977w. DOI: https://doi.org/10.1021/cg049977w
[49] J. W. P. Schmelzer, G. S. Boltachev, and V. G. Baidakov, “Classical and generalized Gibbs' approaches and the work of critical cluster formation in nucleation theory. J. Chem. Phys., vol. 124, art-no. 194503, 2006, doi: https://doi.org/10.1063/1.2196412. DOI: https://doi.org/10.1063/1.2196412
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Jessica Streichert, Stefanie Meyer, Alessio Zandona, Danilo Di Genova, Joachim Deubener

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-09-25
Published 2025-10-15
Funding data
-
Deutsche Forschungsgemeinschaft
Grant numbers DE598/33-1 -
Deutsche Forschungsgemeinschaft
Grant numbers DI 2751/2-1