Defossilization of Industrial Glass Production via Carbon Capture and Utilization of Flue Gas
Techno-Economic and Ecological Evaluation of a Carbon Cycle Process Based on Synthetic Methane
DOI:
https://doi.org/10.52825/glass-europe.v4i.2861Keywords:
CO2-Neutral Glass, Carbon Capture and Storage/Utilization, Techno-Economic AssessmentAbstract
The glass industry faces significant challenges in achieving carbon neutrality due to its reliance on fossil fuels and process-related CO2 emissions from raw material decomposition. While most defossilization efforts focus on CO2-neutral heating, batch-related emissions remain largely unaddressed. This study investigates a closed carbon cycle approach for glass manufacturing by integrating carbon capture and utilization (CCU) with power-to-gas technologies. The proposed process captures both combustion- and batch-related CO2 emissions and converts them into synthetic natural gas using renewable hydrogen. The techno-economic model, based on a typical oxy-fuel container glass furnace (300 t per day) and current (2022) German market conditions, covers all key process steps: flue gas cleaning, CO2 separation, hydrogen production via electrolysis, and methanation. Results show that more than 99 % of scope 1 emissions and about 62% of scope 1+2 emissions can be abated. However, the process is associated with high energy demand and costs, with energy supply alone amounting to €559 (2022) per metric ton glass at an electricity price of €60 per MWh. The cost of CO2 abatement is estimated at €1132 (2022) per metric ton. While all process steps are based on established industrial technologies, the overall economic viability remains highly sensitive to electricity prices and further technological improvements. The approach is especially relevant for high-quality glass production with low cullet content and in regions with abundant renewable electricity.
Downloads
References
[1] L. Kemp et al., ‘Climate Endgame: Exploring catastrophic climate change scenarios’, Proc. Natl. Acad. Sci. U.S.A., vol. 119, no. 34, p. e2108146119, Aug. 2022, doi: 10.1073/pnas.2108146119.
[2] M. Kotz, A. Levermann, and L. Wenz, ‘The economic commitment of climate change’, Nature, vol. 628, no. 8008, pp. 551–557, Apr. 2024, doi: 10.1038/s41586-024-07219-0.
[3] United Nations, The Paris Agreement, vol. FCCC/CP/2015/L.9/Rev.1. 2016. [Online]. Available: https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf
[4] N. J. L. Lenssen et al., ‘Improvements in the GISTEMP Uncertainty Model’, JGR At-mospheres, vol. 124, no. 12, pp. 6307–6326, Jun. 2019, doi: 10.1029/2018JD029522.
[5] A. D. Ellerman and B. K. Buchner, ‘The European Union Emissions Trading Scheme: Origins, Allocation, and Early Results’, Review of Environmental Economics and Policy, vol. 1, no. 1, pp. 66–87, Jan. 2007, doi: 10.1093/reep/rem003.
[6] P. Bayer and M. Aklin, ‘The European Union Emissions Trading System reduced CO2 emissions despite low prices’, Proc. Natl. Acad. Sci. U.S.A., vol. 117, no. 16, pp. 8804–8812, Apr. 2020, doi: 10.1073/pnas.1918128117.
[7] ‘Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2022’, U. S. Environ-mental Protection Agency, EPA, EPA 430R-24004, 2024.
[8] G. Ganti et al., ‘Evaluating the near- and long-term role of carbon dioxide removal in meeting global climate objectives’, Commun Earth Environ, vol. 5, no. 1, p. 377, Jul. 2024, doi: 10.1038/s43247-024-01527-z.
[9] P. Javadi et al., ‘The impact of regional resources and technology availability on carbon dioxide removal potential in the United States’, Environ. Res.: Energy, vol. 1, no. 4, p. 045007, Dec. 2024, doi: 10.1088/2753-3751/ad81fb.
[10] M. Abegg, Z. Clulow, L. Nava, and D. M. Reiner, ‘Expert insights into future trajectories: assessing cost reductions and scalability of carbon dioxide removal technologies’, Front. Clim., vol. 6, p. 1331901, May 2024, doi: 10.3389/fclim.2024.1331901.
[11] Y. Erbay and A. Mattos, ‘Global Assessment of Direct Air Capture Costs’, IEAGHG, Cheltenham, Dec. 2021.
[12] K. Sievert, T. S. Schmidt, and B. Steffen, ‘Considering technology characteristics to project future costs of direct air capture’, Joule, vol. 8, no. 4, pp. 979–999, Apr. 2024, doi: 10.1016/j.joule.2024.02.005.
[13] J. Young et al., ‘The cost of direct air capture and storage can be reduced via strategic deployment but is unlikely to fall below stated cost targets’, One Earth, vol. 6, no. 7, pp. 899–917, Jul. 2023, doi: 10.1016/j.oneear.2023.06.004.
[14] M. Crippa et al., ‘GHG emissions of all world countries.’, Luxembourg, JRC138862, 2024. Accessed: Jan. 10, 2025. [Online]. Available: https://data.europa.eu/doi/10.2760/4002897
[15] J. Egerer, N. Farhang-Damghani, V. Grimm, and P. Runge, ‘The industry transformation from fossil fuels to hydrogen will reorganize value chains: Big picture and case studies for Germany’, Applied Energy, vol. 358, p. 122485, Mar. 2024, doi: 10.1016/j.apenergy.2023.122485.
[16] L. Holappa, ‘A General Vision for Reduction of Energy Consumption and CO2 Emissions from the Steel Industry’, Metals, vol. 10, no. 9, p. 1117, Aug. 2020, doi: 10.3390/met10091117.
[17] E. Benhelal, E. Shamsaei, and M. I. Rashid, ‘Challenges against CO2 abatement strate-gies in cement industry: A review’, Journal of Environmental Sciences, vol. 104, pp. 84–101, Jun. 2021, doi: 10.1016/j.jes.2020.11.020.
[18] D. D. Furszyfer Del Rio et al., ‘Decarbonizing the glass industry: A critical and systemat-ic review of developments, sociotechnical systems and policy options’, Renewable and Sustainable Energy Reviews, vol. 155, p. 111885, Mar. 2022, doi: 10.1016/j.rser.2021.111885.
[19] European Environment Agency, ‘EU Emissions Trading System (ETS) data viewer’, European Environment Agency. Accessed: Jan. 10, 2025. [Online]. Available: https://www.eea.europa.eu/en/analysis/maps-and-charts/emissions-trading-viewer-1-dashboards
[20] W. Dienemann, ‘HEIDELBERG MATERIALS’ CO2 roadmap On the way to carbon neu-trality’, ce papers, vol. 6, no. 6, pp. 110–113, Dec. 2023, doi: 10.1002/cepa.2819.
[21] T. A. Branca, V. Colla, M. M. Murri, and A. J. Schröder, ‘The Impact of the New Tech-nologies and the EU Climate Objectives on the Steel Industry’, in Industry 4.0 and the Road to Sustainable Steelmaking in Europe, D. Stroud, A. J. Schröder, L. Antonazzo, C. Behrend, V. Colla, A. Goti, and M. Weinel, Eds., in Topics in Mining, Metallurgy and Ma-terials Engineering. , Cham: Springer International Publishing, 2024, pp. 53–75. doi: 10.1007/978-3-031-35479-3_4.
[22] Nippon Sheet Glass Co., Ltd., ‘Architectural glass production powered by hydrogen in world first’, pilkington.com. Accessed: Jan. 10, 2025. [Online]. Available: https://www.pilkington.com/en-gb/uk/news-insights/latest/architectural-glass-production-powered-by-hydrogen-in-world-first
[23] Lars Biennek, ‘All-electric melting prospects for glass container production’, Glass Worldwide, vol. 88, pp. 76–80, 2020.
[24] Ardagh Glass Packaging, ‘Ardagh Glass Packaging welcomes glass industry partners to NextGen Furnace launch’, Glass Technology: European Journal of Glass Science and Technology Part A, vol. 64, no. 6, pp. 202–203, 2023.
[25] C. Sinton, ‘Deep decarbonization of glassmaking’, American Ceramic Society Bulletin, vol. 102, p. 24, May 2023.
[26] FEVE, ‘Recycling: why glass always has a happy CO2 ending’, FEVE, Brussels, 2016. [Online]. Available: https://feve.org/wp-content/uploads/2016/04/FEVE-brochure-Recycling-Why-glass-always-has-a-happy-CO2-ending-.pdf
[27] British Glass, ‘Glass sector. Net zero strategy 2050’, 2019.
[28] P. Leisin and P. Radgen, ‘Glas 2045 - Dekarbonatisierung der Glasindustrie’, IER Institut für Energiewirtschaft und Rationelle Energieanwendung, Stuttgart, Studie im Auftrag des Bundesverband Glasindustrie e.V., 2022.
[29] M. Zier, P. Stenzel, L. Kotzur, and D. Stolten, ‘A review of decarbonization options for the glass industry’, Energy Conversion and Management: X, vol. 10, p. 100083, Jun. 2021, doi: 10.1016/j.ecmx.2021.100083.
[30] FEVE, ‘Latest glass packaging recycling rate steady at 76%’. Accessed: Jul. 14, 2025. [Online]. Available: https://feve.org/glass_recycling_stats_2018/
[31] O-I ITALY SPA, Stazione sperimentale del vetro societa consortile per azioni, and K2-CO2 SRL, ‘Full-scale demonstration of carbon capture and storage in glass manufactur-ing to limit furnace CO2 emissions’, Varese, Project description LIFE23-CCM-IT-GLASS2LIFE/101158029, 06/2028 2025. [Online]. Available: https://webgate.ec.europa.eu/life/publicWebsite/project/LIFE23-CCM-IT-GLASS2LIFE-101158029/full-scale-demonstration-of-carbon-capture-and-storage-in-glass-manufacturing-to-limit-furnace-co2-emissions#
[32] R. Ireson et al., ‘Renewable waste-derived fuels for glass and ceramics manufacturing: feasibility study’, A report for Department for Business, Energy & Industrial Strategy, 2023. [Online]. Available: https://assets.publishing.service.gov.uk/media/649ac491b4d6ef000c038f5e/Glass_Futures_-_IFS_Phase_1_report.pdf
[33] Bundesverband Erneuerbare Energie e.V., ‘Erneuerbare Energien als Schlüssel für Deutschlands Wohlstand’, BEE, Berlin, Positionspapier, Dec. 2024. [Online]. Available: https://www.bee-ev.de/service/publikationen-medien/beitrag/erneuerbare-energien-als-schluessel-fuer-deutschlands-wohlstand
[34] Y. Rahmat, F. Drünert, B. Fleischmann, and R.-U. Dietrich, ‘Advancing the defossiliza-tion of the glass industry based on the integration of synthetic fuels production’, Fuel.
[35] Bundesministerium für Wirtschaft und Klimaschutz, ‘Wettbewerbsfähige Strompreise für die energieintensiven Unternehmen in Deutschland und Europa sicherstellen’, BMWK, Berlin, Arbeitspapier des BMWK zum Industriestrompreis für das Treffen Bündnis Zu-kunft der Industrie, May 2023.
[36] E. Althoff et al., ‘Climate-neutral power system 2035. How the German power sector can become climate-neutral by 2035’, Agora Energiewende, Prognos, Consentec, Ber-lin, 267/02-ES-2022/EN, 2022. [Online]. Available: https://www.agora-energiewende.org/publications/climate-neutral-power-system-2035-summary
[37] T. Lauf, M. Memmler, and S. Schneider, ‘Emissionsbilanz erneuerbarer Energieträger 2023’, Umweltbundesamt, Dessau-Roßlau, Mar. 2025. doi: 10.60810/OPENUMWELT-7687.
[38] M. S. Peters, K. D. Timmerhaus, R. E. West, and R. E. West, Plant design and econom-ics for chemical engineers, 5. ed., International ed. in McGraw-Hill chemical engineering series. Boston: McGraw-Hill, 2003.
[39] BDEW, ‘BDEW-Gaspreisanalyse April 2023’, Berlin, Apr. 2023. [Online]. Available: https://www.bdew.de/media/original_images/2023/04/25/230420_bdew-gaspreisanalyse_april-2023_20042023.pdf
[40] C. Jatzwauk, ‘Design and Operation of Glass Furnaces’, in Encyclopedia of Glass Sci-ence, Technology, History, and Culture, 1st ed., P. Richet, R. Conradt, A. Takada, and J. Dyon, Eds., Wiley, 2021, pp. 1147–1164. doi: 10.1002/9781118801017.ch9.7.
[41] B. M. Scalet, M. Garcia Muñoz, A. Q. Sissa, S. Roudier, and L. Delgado Sancho, ‘Best available techniques (BAT) reference document for the manufacture of glass: industrial emissions Directive 2010/75/EU: integrated pollution prevention and control.’, Joint Re-search Centre of the European Commission, Luxembourg, 2013. Accessed: Jan. 10, 2025. [Online]. Available: https://data.europa.eu/doi/10.2791/69502
[42] Madivate, Carvalho, Müller, Franz, and Wilsmann, Wolfgang, ‘Thermochemistry of the glass melting process - Energy requirement in melting soda-lime-silica glasses from cul-let-containing batches’, Glastech. Ber. Glass Sci. Technol., vol. 69, no. 6, pp. 167–178, 1996.
[43] Reinhard Conradt, Thermodynamik und Glas, 2nd ed. in Handbuch der Glastechnik. Offenbach am Main: Verlag der Deutschen Glastechnischen Gesellschaft e. V., 2022.
[44] S. Rezaei, A. Liu, and P. Hovington, ‘Emerging technologies in post-combustion carbon dioxide capture & removal’, Catalysis Today, vol. 423, p. 114286, Nov. 2023, doi: 10.1016/j.cattod.2023.114286.
[45] E. Mostafavi, O. Ashrafi, and P. Navarri, ‘Assessment of process modifications for amine-based post-combustion carbon capture processes’, Cleaner Engineering and Technology, vol. 4, p. 100249, Oct. 2021, doi: 10.1016/j.clet.2021.100249.
[46] J. Tian, Y. Shen, D. Zhang, and Z. Tang, ‘CO2 capture by vacuum pressure swing ad-sorption from dry flue gas with a structured composite adsorption medium’, Journal of Environmental Chemical Engineering, vol. 9, no. 5, p. 106037, Oct. 2021, doi: 10.1016/j.jece.2021.106037.
[47] M. T. Ho, G. W. Allinson, and D. E. Wiley, ‘Reducing the Cost of CO2 Capture from Flue Gases Using Pressure Swing Adsorption’, Ind. Eng. Chem. Res., vol. 47, no. 14, pp. 4883–4890, Jul. 2008, doi: 10.1021/ie070831e.
[48] J. Gao, S. Wang, J. Wang, L. Cao, S. Tang, and Y. Xia, ‘Effect of SO2 on the amine-based CO2 capture solvent and improvement using ion exchange resins’, International Journal of Greenhouse Gas Control, vol. 37, pp. 38–45, Jun. 2015, doi: 10.1016/j.ijggc.2015.03.001.
[49] S. Talei, D. Fozer, P. S. Varbanov, A. Szanyi, and P. Mizsey, ‘Oxyfuel Combustion Makes Carbon Capture More Efficient’, ACS Omega, p. acsomega.3c05034, Jan. 2024, doi: 10.1021/acsomega.3c05034.
[50] J. L. Sorrels, A. Baynham, D. D. Randall, and R. Laxton, ‘Section 5: Wet and dry scrub-bers for acid gas control’, in Cost reports and guidance for air pollution regulations, 7th ed., United States Environmental Protection Agency, Ed., Research Triangle Park, NC.
[51] K. Daginnus, T. Marty, N. V. Trotta, T. Brinkmann, A. Whitfield, and S. Roudier, ‘Best available techniques (BAT) reference document for common waste gas management and treatment systems in the chemical sector: Industrial Emissions Directive 2010/75/EU (integrated pollution prevention and control)’, Joint Research Centre of the European Commission, Luxembourg, JRC131915, Jan. 2023. Accessed: Jan. 10, 2025. [Online]. Available: https://data.europa.eu/doi/10.2760/220326
[52] Aurora Energy, LLC, ‘Best Available Control Technology Analysis, Chena Power Plant, Fairbanks, Alaska’, Cincinnati, OH, 2019. [Online]. Available: https://dec.alaska.gov/media/5y1jydex/chena-bact-determination.pdf
[53] M. Z. Zuwairi and S. A. Rahman, ‘Study on CO2 / N2 separation: the effect of rubbery polymer coating on PVDF membrane’, IOP Conf. Ser.: Mater. Sci. Eng., vol. 206, p. 012047, Jun. 2017, doi: 10.1088/1757-899X/206/1/012047.
[54] I. A. Hashim et al., ‘Separation of CO2 from nitrogen and oxygen using hydrophobic ce-ramic membrane’, Journal of Applied Material Science & Engineering Research, vol. 7, no. 2, pp. 172–181, Oct. 2023, doi: 10.20944/preprints202310.1113.v1.
[55] J. C. Kuo, K. H. Wang, and C. Chen, ‘Pros and cons of different Nitrogen Removal Unit (NRU) technology’, Journal of Natural Gas Science and Engineering, vol. 7, pp. 52–59, Jul. 2012, doi: 10.1016/j.jngse.2012.02.004.
[56] M. Samei and A. Raisi, ‘Separation of nitrogen from methane by multi-stage membrane processes: Modeling, simulation, and cost estimation’, Journal of Natural Gas Science and Engineering, vol. 98, p. 104380, Feb. 2022, doi: 10.1016/j.jngse.2021.104380.
[57] M. C. Flores and K. C. D. S. Figueiredo, ‘Carbon Dioxide/Nitrogen Separation Through Oxygenated Carbon Nanotubes‐Containing Polysulfone Membranes’, Macromolecular Symposia, vol. 394, no. 1, p. 2000058, Dec. 2020, doi: 10.1002/masy.202000058.
[58] R. Doctor et al., ‘Transport of CO2’, in IPCC Special Report on Carbon Dioxide Capture and Storage, Intergovernmental Panel on Climate Change (IPCC), Ed., Cambridge: Cambridge University Press, 2005, pp. 179–194. [Online]. Available: https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_chapter4-1.pdf
[59] J. Race, B. Wetenhall, P. N. Seevam, and M. J. Downie, ‘Towards a CO2 pipeline speci-fication: defining tolerance’, The Journal of Pipeline Engineering, vol. 11, no. 3, pp. 173–190, 2012.
[60] T. Roeder, A. Rosenstiel, N. Monnerie, and C. Sattler, ‘Impact of expected cost reduc-tion and lifetime extension of electrolysis stacks on hydrogen production costs’, Interna-tional Journal of Hydrogen Energy, vol. 95, pp. 1242–1251, Dec. 2024, doi: 10.1016/j.ijhydene.2024.08.015.
[61] T. D. Fechtenburg, ‘The Value of Flexibility for Electrolyzers’, energinet, Fredericia, 22/04134–1, May 2022. Accessed: Jan. 17, 2025. [Online]. Available: https://energinet.dk/media/essfy3sk/the-value-of-flexibility-for-electrolyzers-thomas-dalgas-fechtenburg-energinet.pdf
[62] C. Moran et al., ‘A flexible techno-economic analysis tool for regional hydrogen hubs – A case study for Ireland’, International Journal of Hydrogen Energy, vol. 48, no. 74, pp. 28649–28667, Aug. 2023, doi: 10.1016/j.ijhydene.2023.04.100.
[63] O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few, ‘Future cost and performance of water electrolysis: An expert elicitation study’, International Journal of Hydrogen Energy, vol. 42, no. 52, pp. 30470–30492, Dec. 2017, doi: 10.1016/j.ijhydene.2017.10.045.
[64] M. Kopp, D. Coleman, C. Stiller, K. Scheffer, J. Aichinger, and B. Scheppat, ‘Ener-giepark Mainz: Technical and economic analysis of the worldwide largest Power-to-Gas plant with PEM electrolysis’, International Journal of Hydrogen Energy, vol. 42, no. 19, pp. 13311–13320, May 2017, doi: 10.1016/j.ijhydene.2016.12.145.
[65] M. Sánchez, E. Amores, D. Abad, L. Rodríguez, and C. Clemente-Jul, ‘Aspen Plus model of an alkaline electrolysis system for hydrogen production’, International Journal of Hydrogen Energy, vol. 45, no. 7, pp. 3916–3929, Feb. 2020, doi: 10.1016/j.ijhydene.2019.12.027.
[66] F. Habermeyer, V. Papantoni, U. Brand-Daniels, and R.-U. Dietrich, ‘Sustainable avia-tion fuel from forestry residue and hydrogen – a techno-economic and environmental analysis for an immediate deployment of the PBtL process in Europe’, Sustainable En-ergy Fuels, vol. 7, no. 17, pp. 4229–4246, 2023, doi: 10.1039/D3SE00358B.
[67] K. Stangeland, D. Kalai, H. Li, and Z. Yu, ‘CO2 Methanation: The Effect of Catalysts and Reaction Conditions’, Energy Procedia, vol. 105, pp. 2022–2027, May 2017, doi: 10.1016/j.egypro.2017.03.577.
[68] H. Harms, B. Höhlein, and A. Skov, ‘Methanisierung kohlenmonoxidreicher Gase beim Energie‐Transport’, Chemie Ingenieur Technik, vol. 52, no. 6, pp. 504–515, Jan. 1980, doi: 10.1002/cite.330520605.
[69] É. S. Van-Dal and C. Bouallou, ‘Design and simulation of a methanol production plant from CO2 hydrogenation’, Journal of Cleaner Production, vol. 57, pp. 38–45, Oct. 2013, doi: 10.1016/j.jclepro.2013.06.008.
[70] C. H. Bartholomew, ‘Mechanisms of Nickel Catalyst Poisoning’, in Studies in Surface Science and Catalysis, vol. 34, Elsevier, 1987, pp. 81–104. doi: 10.1016/S0167-2991(09)60352-9.
[71] K.-T. Li and Y.-C. Hung, ‘Hydrogenation of sulfur dioxide to hydrogen sulfide over Fe/γ-Al2O3 catalysts’, Applied Catalysis B: Environmental, vol. 40, no. 1, pp. 13–20, Jan. 2003, doi: 10.1016/S0926-3373(02)00009-7.
[72] D. Chiche, C. Diverchy, A.-C. Lucquin, F. Porcheron, and F. Defoort, ‘Synthesis Gas Purification’, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, vol. 68, no. 4, pp. 707–723, Jul. 2013, doi: 10.2516/ogst/2013175.
[73] A. Coy and T. Cotter, ‘Personal Conversation about Requirements and Usage of Cata-lysts at Clariant’, Sep. 09, 2021.
[74] S. Rönsch et al., ‘Review on methanation – From fundamentals to current projects’, Fuel, vol. 166, pp. 276–296, Feb. 2016, doi: 10.1016/j.fuel.2015.10.111.
[75] R. Bellman, Dynamic programming. Princeton, NJ: Princeton Univ. Pr, 1957.
[76] D. P. Bertsekas, Dynamic programming and optimal control, 4th edition. in Athena scien-tific optimization and computation series. Nashua, NH: Athena scientific, 2012.
[77] A. S. Mehr, A. D. Phillips, M. P. Brandon, M. T. Pryce, and J. G. Carton, ‘Recent chal-lenges and development of technical and technoeconomic aspects for hydrogen stor-age, insights at different scales; A state of art review’, International Journal of Hydrogen Energy, vol. 70, pp. 786–815, Jun. 2024, doi: 10.1016/j.ijhydene.2024.05.182.
[78] A. Alekseev et al., ‘Hydrogen liquefaction, storage, transport and application of liquid hydrogen’, Karlsruher Institut für Technologie (KIT), 2023. doi: 10.5445/IR/1000168281.
[79] F. G. Albrecht, D. H. König, N. Baucks, and R.-U. Dietrich, ‘A standardized methodology for the techno-economic evaluation of alternative fuels – A case study’, Fuel, vol. 194, pp. 511–526, Apr. 2017, doi: 10.1016/j.fuel.2016.12.003.
[80] S. Maier, S. Tuomi, J. Kihlman, E. Kurkela, and R.-U. Dietrich, ‘Techno-economically-driven identification of ideal plant configurations for a new biomass-to-liquid process – A case study for Central-Europe’, Energy Conversion and Management, vol. 247, p. 114651, Nov. 2021, doi: 10.1016/j.enconman.2021.114651.
[81] Martin Kopp, ‘Strommarktseitige Optimierung des Betriebs einer PEM-Elektrolyseanlage’, Uni Kassel, Kassel, 2018.
[82] D. Ruprecht, ‘Rohstoffbedarf der Wasserstoffproduktion’, Ffe Beitragsreihe Wasserstoff Deep Dives. Accessed: May 15, 2025. [Online]. Available: https://www.ffe.de/veroeffentlichungen/beitragsreihe-wasserstoff-deep-dives-rohstoffbedarf-der-wasserstoffproduktion/
[83] F. D. Meylan, V. Moreau, and S. Erkman, ‘Material constraints related to storage of fu-ture European renewable electricity surpluses with CO2 methanation’, Energy Policy, vol. 94, pp. 366–376, Jul. 2016, doi: 10.1016/j.enpol.2016.04.012.
[84] A. Schwochow, ‘Betriebliche CO2-Bilanz - Scopes leicht erklärt’, KliMaWirtschaft. Ac-cessed: Mar. 25, 2025. [Online]. Available: https://klimaschutz-wirtschaft.de/greenhouse-gas-protocol-scopes-leicht-erklaert/
[85] D. R. Woods, Rules of Thumb in Engineering Practice, 1st ed. Wiley, 2007. doi: 10.1002/9783527611119.
[86] G. Parks, R. Boyd, J. Cornish, and R. Remick, ‘Hydrogen Station Compression, Stor-age, and Dispensing Technical Status and Costs Independent Review’, National Renew-able Energy Laboratory, Denver West Parkway, technical report NREL/BK-6A10-58564, 2014. Accessed: Jan. 10, 2025. [Online]. Available: http://rgdoi.net/10.13140/RG.2.2.23768.34562
[87] ‘EU Natural Gas’, Trading Economics. Accessed: May 09, 2025. [Online]. Available: https://tradingeconomics.com/commodity/eu-natural-gas
[88] Biennek, Lars et al., ‘HVG-Fortbildungskurs 2025: Ofenbau für die Glasherstellung’, Ha-nau-Steinheim, Nov. 24, 2025.
[89] Coleman, David et al., ‘Wasserstoff-Potenzialstudie und -Bewertung einer versiegelten Industriefläche am Beispiel “Rüsselsheim West”’, Wiesbaden, Final report, Sep. 2025. [Online]. Available: https://www.ruesselsheim.de/medien/pdfs-ruesselsheim.de/wirtschaft/2025-wasserstoff-potenzialstudie-ruesselsheim-west-hynes-cruh21.pdf
[90] Baum, Wolfgang, Bayer, Thomas, Horn, Elmar, Lienkamp, Heinrich, and Rastogi, Ash-ok, ‘Auslegung, Bau und Betrieb von 5 MW und 20 MW Methanisierungsanlagen für das Energiespeicherkonzept “Power to Gas” - eine Vorstudie’, Infraserv Höchst, Frankfurt am Main, Abschlussbericht FKZ 0325627, Dec. 2014. [Online]. Available: https://edocs.tib.eu/files/e01fb15/842184619.pdf
[91] A. H. Reksten, M. S. Thomassen, S. Møller-Holst, and K. Sundseth, ‘Projecting the fu-ture cost of PEM and alkaline water electrolysers; a CAPEX model including electrolys-er plant size and technology development’, International Journal of Hydrogen Energy, vol. 47, no. 90, pp. 38106–38113, Nov. 2022, doi: 10.1016/j.ijhydene.2022.08.306.
[92] Y. Li, L. Zhang, B. Yu, J. Zhu, and C. Wu, ‘CO2 High-Temperature Electrolysis Technol-ogy Toward Carbon Neutralization in the Chemical Industry’, Engineering, vol. 21, pp. 101–114, Feb. 2023, doi: 10.1016/j.eng.2022.02.016.
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Ferdinand Drünert, Yoga Rahmat, Bernhard Fleischmann, Ralph-Uwe Dietrich

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-12-22
Published 2026-02-04
Funding data
-
Bundesministerium für Wirtschaft und Klimaschutz
Grant numbers 01LJ2005A+B -
NextGenerationEU