Thermal Poling Assisted Ion Exchange in LAS Glass and Glass-Ceramic
DOI:
https://doi.org/10.52825/glass-europe.v3i.2865Keywords:
Thermal Poling, Ion Exchange, Glass-CeramicsAbstract
An open electrode thermal poling setup was used to introduce Na+ and K+ cations from chloride salt coatings into the surface of LAS glass. The thermal poling was performed at 200 °C for 180 min and 540 min at poling currents of 50 µA and 200 µA. Na+ and K+ migrate from the salt coatings along the electric field lines into the glass surfaces up to 14 µm and 4 µm in depth, respectively. As these cations are larger than the contained Li+-ions, the induced stresses lead to an increase of surface hardness by ca. 15 % in the ion exchanged areas. Etching trials with 5 % HF solution revealed a faster etching of these Na+ and K+ enriched surface areas. The ceramisation of the treated samples led to uneven surfaces presumably due to the influence of Na+ and K+ on local viscosity in combination with altered crystallisation behaviour. The introduced cations accumulate in the valleys of the surface topology in a 1-2 µm thin glassy surface layer. Contrary to the glass samples, these areas etch away more slowly in the etching trials and reveal protruded domains where the salt crystal contact areas (abbreviated as cca) were in first place. The high quartz solid solution crystal content in the surface is highest for NaCl coated samples followed by KCl coated samples and uncoated but thermally poled samples.
Downloads
References
[1] R. J. Charles, ‘Polarization and Diffusion in a Silicate Glass’, Journal of Applied Phys-ics, vol. 32, no. 6, pp. 1115–1126, June 1961, doi: 10.1063/1.1736169. DOI: https://doi.org/10.1063/1.1736169
[2] P. M. Sutton, ‘Space Charge and Electrode Polarization in Glass, I’, Journal of the American Ceramic Society, vol. 47, no. 4, pp. 188–194, Apr. 1964, doi: 10.1111/j.1151-2916.1964.tb14390.x. DOI: https://doi.org/10.1111/j.1151-2916.1964.tb14390.x
[3] D. E. Carlson, K. W. Hang, and G. F. Stockdale, ‘Electrode “Polarization” in Alkali-Containing Glasses’, J American Ceramic Society, vol. 55, no. 7, pp. 337–341, July 1972, doi: 10.1111/j.1151-2916.1972.tb11305.x. DOI: https://doi.org/10.1111/j.1151-2916.1972.tb11305.x
[4] M. Dussauze et al., ‘How Does Thermal Poling Affect the Structure of Soda-Lime Glass?’, J. Phys. Chem. C, vol. 114, no. 29, pp. 12754–12759, July 2010, doi: 10.1021/jp1033905. DOI: https://doi.org/10.1021/jp1033905
[5] M. Chazot et al., ‘Enhancement of mechanical properties and chemical durability of Soda‐lime silicate glasses treated by DC gas discharges’, J. Am. Ceram. Soc., vol. 104, no. 1, pp. 157–166, Jan. 2021, doi: 10.1111/jace.17438. DOI: https://doi.org/10.1111/jace.17438
[6] E. C. Ziemath, V. D. Araújo, and C. A. Escanhoela, ‘Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass’, Journal of Ap-plied Physics, vol. 104, no. 5, p. 054912, Sept. 2008, doi: 10.1063/1.2975996. DOI: https://doi.org/10.1063/1.2975996
[7] M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, ‘Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses’, Chemical Physics Let-ters, vol. 470, no. 1–3, pp. 63–66, Feb. 2009, doi: 10.1016/j.cplett.2009.01.007. DOI: https://doi.org/10.1016/j.cplett.2009.01.007
[8] W. Margulis and F. Laurell, ‘Fabrication of waveguides in glasses by a poling proce-dure’, Applied Physics Letters, vol. 71, no. 17, pp. 2418–2420, Oct. 1997, doi: 10.1063/1.120079. DOI: https://doi.org/10.1063/1.120079
[9] A. Canagasabey, C. Corbari, Z. Zhang, P. G. Kazansky, and M. Ibsen, ‘Broadly tunable second-harmonic generation in periodically poled silica fibers’, Opt. Lett., vol. 32, no. 13, p. 1863, July 2007, doi: 10.1364/OL.32.001863. DOI: https://doi.org/10.1364/OL.32.001863
[10] P. St. J. Russell, C. N. Pannell, P. G. Kazansky, and L. Dong, ‘Pockels effect in ther-mally poled silica optical fibres’, Electronics Letters, vol. 31, no. 1, pp. 62–63, Jan. 1995, doi: 10.1049/el:19950036. DOI: https://doi.org/10.1049/el:19950036
[11] J. Luo et al., ‘Chemical structure and mechanical properties of soda lime silica glass surfaces treated by thermal poling in inert and reactive ambient gases’, J Am Ceram Soc, vol. 101, no. 7, pp. 2951–2964, July 2018, doi: 10.1111/jace.15476. DOI: https://doi.org/10.1111/jace.15476
[12] H. He, J. Luo, L. Qian, C. G. Pantano, and S. H. Kim, ‘Thermal Poling of Soda-Lime Silica Glass with Nonblocking Electrodes-Part 2: Effects on Mechanical and Mechano-chemical Properties’, J. Am. Ceram. Soc., vol. 99, no. 4, pp. 1231–1238, Apr. 2016, doi: 10.1111/jace.14080. DOI: https://doi.org/10.1111/jace.14080
[13] A. Lipovskii, V. Zhurikhina, and D. Tagantsev, ‘2D‐structuring of glasses via thermal poling: A short review’, Int J of Appl Glass Sci, vol. 9, no. 1, pp. 24–28, Jan. 2018, doi: 10.1111/ijag.12273. DOI: https://doi.org/10.1111/ijag.12273
[14] O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, ‘Poling-assisted bleaching of metal-doped nanocomposite glass’, Applied Physics Let-ters, vol. 85, no. 6, pp. 872–874, Aug. 2004, doi: 10.1063/1.1779966. DOI: https://doi.org/10.1063/1.1779966
[15] K. M. Knowles and A. T. J. Van Helvoort, ‘Anodic bonding’, International Materials Re-views, vol. 51, no. 5, pp. 273–311, Oct. 2006, doi: 10.1179/174328006X102501. DOI: https://doi.org/10.1179/174328006X102501
[16] G. Pintori and V. M. Sglavo, ‘Electric-field assisted ion-exchange of innovative float glass’, Journal of Non-Crystalline Solids, vol. 600, p. 121994, Jan. 2023, doi: 10.1016/j.jnoncrysol.2022.121994. DOI: https://doi.org/10.1016/j.jnoncrysol.2022.121994
[17] A. Talimian and V. M. Sglavo, ‘Electric Field-Assisted Ion Exchange of Borosilicate Glass Tubes’, in Ion Exchange - Studies and Applications, A. Kilislioglu, Ed., InTech, 2015. doi: 10.5772/60805. DOI: https://doi.org/10.5772/60805
[18] A. Talimian, G. Mariotto, and V. M. Sglavo, ‘Electric field‐assisted ion exchange strengthening of borosilicate and soda lime silicate glass’, Int J of Appl Glass Sci, vol. 8, no. 3, pp. 291–300, Sept. 2017, doi: 10.1111/ijag.12266. DOI: https://doi.org/10.1111/ijag.12266
[19] A. Talimian, P. Scardi, and V. M. Sglavo, ‘Sodium-caesium electric field assisted ion exchange in a mixed-alkali (Na, K) lime silicate glass’, Journal of Non-Crystalline Sol-ids, vol. 550, p. 120390, Dec. 2020, doi: 10.1016/j.jnoncrysol.2020.120390. DOI: https://doi.org/10.1016/j.jnoncrysol.2020.120390
[20] A. K. Varshneya, G. A. Olson, and P. K. Kreski, ‘Strengthended glass and methods for making utilizing electric field assist’, US 2015/0166407A1, Dec. 07, 2014
[21] J. Hildebrand and C. Roos, ‘Open Electrode Thermal Poling Setup for Treating Lithium-Aluminosilicate Glass-Ceramics Using Gas Discharge’, Glass Eur, vol. 2, pp. 45–54, Aug. 2024, doi: 10.52825/glass-europe.v2i.1320. DOI: https://doi.org/10.52825/glass-europe.v2i.1320
[22] A. Jambon and J.-P. Carron, ‘Diffusion of Na, K, Rb and Cs in glasses of albite and orthoclase composition’, Geochimica et Cosmochimica Acta, vol. 40, no. 8, pp. 897–903, Aug. 1976, doi: 10.1016/0016-7037(76)90138-1. DOI: https://doi.org/10.1016/0016-7037(76)90138-1
[23] A. Jambon, ‘Tracer diffusion in granitic melts: Experimental results for Na, K, Rb, Cs, Ca, Sr, Ba, Ce, Eu to 1300 °C and a model of calculation’, J. Geophys. Res., vol. 87, no. B13, pp. 10797–10810, Dec. 1982, doi: 10.1029/JB087iB13p10797. DOI: https://doi.org/10.1029/JB087iB13p10797
[24] G. N. Greaves et al., ‘A structural basis for ionic diffusion in oxide glasses’, Philosophi-cal Magazine A, vol. 64, no. 5, pp. 1059–1072, Nov. 1991, doi: 10.1080/01418619108204878. DOI: https://doi.org/10.1080/01418619108204878
[25] G. J. Lauth and J. Kowalczyk, ‘Diffusion’, in Einführung in die Physik und Chemie der Grenzflächen und Kolloide, Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 143–187. doi: 10.1007/978-3-662-47018-3_6. DOI: https://doi.org/10.1007/978-3-662-47018-3_6
[26] X. Wu, J. D. Moskowitz, J. C. Mauro, M. Potuzak, Q. Zheng, and R. Dieckmann, ‘Sodi-um tracer diffusion in sodium boroaluminosilicate glasses’, Journal of Non-Crystalline Solids, vol. 358, no. 12–13, pp. 1430–1437, July 2012, doi: 10.1016/j.jnoncrysol.2012.03.004. DOI: https://doi.org/10.1016/j.jnoncrysol.2012.03.004
[27] X. Wu and R. Dieckmann, ‘Sodium tracer diffusion in a sodium aluminosilicate glass’, Journal of Non-Crystalline Solids, vol. 357, no. 22–23, pp. 3797–3802, Nov. 2011, doi: 10.1016/j.jnoncrysol.2011.07.038. DOI: https://doi.org/10.1016/j.jnoncrysol.2011.07.038
[28] G. H. Frischat, ‘Sodium Diffusion in SiO2 Glass’, J American Ceramic Society, vol. 51, no. 9, pp. 528–530, Sept. 1968, doi: 10.1111/j.1151-2916.1968.tb15681.x. DOI: https://doi.org/10.1111/j.1151-2916.1968.tb15681.x
[29] S. Karlsson, L. Wondraczek, S. Ali, and B. Jonson, ‘Trends in Effective Diffusion Coef-ficients for Ion-Exchange Strengthening of Soda-Lime-Silicate Glasses’, Front. Mater., vol. 4, p. 13, Apr. 2017, doi: 10.3389/fmats.2017.00013. DOI: https://doi.org/10.3389/fmats.2017.00013
[30] C. Venkateswaran, H. Sreemoolanadhan, and R. Vaish, ‘Lithium aluminosilicate (LAS) glass-ceramics: a review of recent progress’, International Materials Reviews, vol. 67, no. 6, pp. 620–657, Aug. 2022, doi: 10.1080/09506608.2021.1994108. DOI: https://doi.org/10.1080/09506608.2021.1994108
[31] J. Luo, H. He, N. J. Podraza, L. Qian, C. G. Pantano, and S. H. Kim, ‘Thermal Poling of Soda-Lime Silica Glass with Nonblocking Electrodes-Part 1: Effects of Sodium Ion Mi-gration and Water Ingress on Glass Surface Structure’, J. Am. Ceram. Soc., vol. 99, no. 4, pp. 1221–1230, Apr. 2016, doi: 10.1111/jace.14081. DOI: https://doi.org/10.1111/jace.14081
[32] D. R. Tadjiev and R. J. Hand, ‘Surface hydration and nanoindentation of silicate glass-es’, Journal of Non-Crystalline Solids, vol. 356, no. 2, pp. 102–108, Jan. 2010, doi: 10.1016/j.jnoncrysol.2009.10.005. DOI: https://doi.org/10.1016/j.jnoncrysol.2009.10.005
[33] M. Sander, P. Engelmann, P. Jacobs, and C. Roos, ‘Controlled surface crystallization of lithium‐zinc‐alumosilicate glass‐ceramics using thermal poling’, J Am Ceram Soc, vol. 105, no. 5, pp. 3279–3290, May 2022, doi: 10.1111/jace.18301. DOI: https://doi.org/10.1111/jace.18301
[34] M. Sander, ‘Structure and properties of thermally poled lithium alumosilicate glasses and glass-ceramics’, Dept. of Glass and Glass-Ceramic, RWTH Aachen University, Aachen, Germany, 2023.
[35] G. A. C. M. Spierings, ‘Wet chemical etching of silicate glasses in hydrofluoric acid based solutions’, J Mater Sci, vol. 28, no. 23, pp. 6261–6273, Dec. 1993, doi: 10.1007/BF01352182. DOI: https://doi.org/10.1007/BF01352182
[36] D. Liang and D. W. Readey, ‘Dissolution Kinetics of Crystalline and Amorphous Silica in Hydrofluoric‐Hydrochloric Acid Mixtures’, Journal of the American Ceramic Society, vol. 70, no. 8, pp. 570–577, Aug. 1987, doi: 10.1111/j.1151-2916.1987.tb05708.x. DOI: https://doi.org/10.1111/j.1151-2916.1987.tb05708.x
[37] K Kanaya and S Okayama, ‘Penetration and energy-loss theory of electrons in solid targets’, J. Phys. D: Appl. Phys., vol. 5, no. 1, pp. 43–58, Jan. 1972, doi: 10.1088/0022-3727/5/1/308. DOI: https://doi.org/10.1088/0022-3727/5/1/308
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jonas Hildebrand, Christian Roos

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-10-02
Published 2025-11-24