Hydrogen Permeability of Tectosilicate Glasses for Tank Barrier Liners





Hydrogen permeation, Aluminosilicate glasses, Hydrogen storage tank, Glass liner


The permeation of hydrogen gas was studied in meta-aluminous (tectosilicate) glass powders of Li2O×Al2O3×SiO2 (LAS), Na2O×Al2O3×SiO2 (NAS) and MgO×Al2O3×SiO2 (MAS) systems by pressure loading and vacuum extraction in the temperatures range 210–310 °C. With this method, both the solubility S and the diffusivity D were determined, while the permeability was given by the product SD. For all glasses, S was found to decrease with temperature, while D increased. Since the activation energy of diffusion of H2 molecules exceeded that of dissolution, permeation increased slightly with temperature. When extrapolated to standard conditions (25 °C), the permeability of tectosilicate glasses was found to be only 10-22–10-24 mol H2 (m s Pa)-1, which is 8–10 magnitudes lower than most polymers. Thin glass liners of these compositions are expected to be the most effective barrier for tanks of pressurised hydrogen.


Download data is not yet available.


B. O. Mysen, “The structure of silicate melts,” Ann. Rev. Earth Planet. Sci., vol. 11, pp. 75–97, 1983, doi: https://www.doi.org/10.1146/annurev.ea.11.050183.000451 DOI: https://doi.org/10.1146/annurev.ea.11.050183.000451

P. A. Rosen, “Beitrag zur Optimierung von Wasserstoffdruckbehältern, Thermische und Geometrische Optimierung für die automobile Anwendung,“ AutoUni-Schriftenreihe Band 113, Springer, Wiesbaden, 2018, pp. 11–130. DOI: https://doi.org/10.1007/978-3-658-21124-0_3

Y. Su, H. Lv, W. Zhou and C. Zhang, “Review of the hydrogen permeability of the liner material of type iv on-board hydrogen storage tank,” World Electr. Veh. J., vol. 12, Art. no. 130, 2021, doi: https://www.doi.org/10.3390/wevj12030130 DOI: https://doi.org/10.3390/wevj12030130

M. Prewitz, M. Gaber, R. Müller, C. Marotztke and K. Holtappels, “Polymer coated glass capillaries and structures for high-pressure hydrogen storage: permeability and hydrogen tightness,” Int. J. Hydro. Energ., vol. 43, pp. 5637–5644, 2018, doi: https://www.doi.org/10.1016/j.ijhydene.2017.12.092 DOI: https://doi.org/10.1016/j.ijhydene.2017.12.092

R. R. Barth, K. L. Simmons and C. San Marchi, “Polymers for hydrogen infrastructure and vehicle fuel systems: applications, properties, and gap analysis,” Sandia National Labs., Albuquerque, NM, USA, Livermore, CA, USA, 2013, p. 34. DOI: https://doi.org/10.2172/1104755

J. E. Shelby, “Handbook of diffusion in solids and melts,” ASM International, Chicago 1996, pp. 16–70.

T. Welter, R. Müller, J. Deubener, U. Marzok and S. Reinsch, “Hydrogen permeation through glass,“ Front. Mater., vol. 6, Art. no. 342, 2020, doi: https://www.doi.org/10.3389/fmats.2019.00342 DOI: https://doi.org/10.3389/fmats.2019.00342

T. Welter, U. Marzok, J. Deubener, S. Reinsch and R. Müller, “Hydrogen diffusivity in sodium aluminosilicate glasses,“ J. Non-Cryst. Solids, vol. 521, Art. no. 119502, 2019, doi: https://www.doi.org/10.1016/j.jnoncrysol.2019.119502 DOI: https://doi.org/10.1016/j.jnoncrysol.2019.119502

A. Zandona, B. Rüdinger, O. Hochrein and J. Deubener, “Crystallization sequence within the keatite solid solution – cordierite mixed compositional triangle with TiO2 as nucleating agent,” J. Non-Cryst. Solids vol. 505, pp. 320–332, 2019, doi: https://doi.org/10.1016/j.jnoncrysol.2018.11.012 DOI: https://doi.org/10.1016/j.jnoncrysol.2018.11.012

R.M. Barrer, “Diffusion in and through solids,” Cambridge Univ. Press, Cambridge, 1941, pp. 117–143.

P. Ried, M. Gaber, R. Müller and J. Deubener, “Hydrogen permeability of a barium-aluminoborosilicate glass - A methodical approach,” J. Non-Cryst Solids, vol. 394-395, pp. 43–49, 2014, doi: https://www.doi.org/10.1016/j.jnoncrysol.2014.04.006 DOI: https://doi.org/10.1016/j.jnoncrysol.2014.04.006

J. Crank, “The Mathematics of Diffusion,” 2nd ed., Oxford Univ. Press, Oxford, 1975, pp. 89–103.

R. H. Doremus, “Glass Science,” 2nd ed., John Wiley & Sons, New York, 1994, pp. 122–150.

J. E. Shelby and S. C. Keeton, “Temperature dependence of gas diffusion in glass,” J. Appl. Phys., vol. 45, pp. 1458–1460, 1974, doi: https://www.doi.org/10.1063/1.1663433 DOI: https://doi.org/10.1063/1.1663433




How to Cite

Reinsch, S., Welter, T., Müller, R., & Deubener, J. (2023). Hydrogen Permeability of Tectosilicate Glasses for Tank Barrier Liners. Glass Europe, 1, 1–11. https://doi.org/10.52825/glass-europe.v1i.425
Received 2023-04-30
Accepted 2023-06-07
Published 2023-06-26

Funding data