Surface Hardness and Abrasion Threshold of Chemically Strengthened Soda-Lime Silicate Glasses After Steam Processing

Authors

DOI:

https://doi.org/10.52825/glass-europe.v1i.435

Keywords:

chemical strengthening, mechanical properties, steam, defect resistance, abrasion, hardness

Abstract

Chemical strengthening by diffusive ion exchange (IOX) is a common method to improve the mechanical performance of glass products. However, the process of ion-stuffing is often associated with an increase of surface hardness and a decrease of the resistance to abrasive wear during scratching, even when the thickness of the exchanged layer is low. Autoclave steam-treatment presents a way to compensate the enhanced surface brittleness accompanying IOX. It causes a notable shift in the load threshold for microabrasion to more abrasion-resistant glasses. Subject to the specific processing parameters, the softening effect is constrained to a surface layer of less than 500 nm in thickness; therefore, the overall compressive stress profile is not affected and the advantages of IOX strengthening are retained. In turn, ion-stuffing by IOX counteracts severe autoclave corrosion of soda-lime silicate glasses, making them suitable for a combination of both processes.

Downloads

Download data is not yet available.

References

S. M. Wiederhorn and D. R. Clarke, “Architectural Glass,” Annu Rev Mater Res, vol. 52, pp. 561–592, 2022, doi: 10.1146/annurev-matsci-101321-014417.

K. Klaiman, D. L. Ortega, and C. Garnache, “Consumer preferences and demand for packaging material and recyclability,” Resour Conserv Recycl, vol. 115, pp. 1–8, Dec. 2016, doi: 10.1016/J.RESCONREC.2016.08.021.

J. Zimmer, “Invited paper: Novel thin glass for 3D shaped electronics display covers,” 49th Annual SID Symposium, Seminar, and Exhibition 2011, Display Week 2011, vol. 2, pp. 833–836, 2011, doi: 10.1889/1.3621462.

S. Addanki, I. S. Amiri, and P. Yupapin, “Review of optical fibers-introduction and ap-plications in fiber lasers,” Results Phys, vol. 10, no. July, pp. 743–750, 2018, doi: 10.1016/j.rinp.2018.07.028.

S. Chen, M. Zang, D. Wang, S. Yoshimura, and T. Yamada, “Numerical analysis of impact failure of automotive laminated glass: A review,” Compos B Eng, vol. 122, pp. 47–60, 2017, doi: 10.1016/j.compositesb.2017.04.007.

M. Ciccotti, “Stress-corrosion mechanisms in silicate glasses,” J Phys D Appl Phys, vol. 42, no. 21, p. 214006, 2009, doi: 10.1088/0022-3727/42/21/214006.

A. K. Varshneya, “Stronger glass products: Lessons learned and yet to be learned,” Int J Appl Glass Sci, vol. 9, no. 2, pp. 140–155, Apr. 2018, doi: 10.1111/ijag.12341.

R. E. Mould, “The Strength of Inorganic Glasses,” in Fracture of Metals, Polymers, and Glasses, Boston, MA: Springer US, 1967, pp. 119–149. doi: 10.1007/978-1-4684-3153-7_7.

L. Wondraczek et al., “Towards ultrastrong glasses,” Advanced Materials, vol. 23, no. 39, pp. 4578–4586, Oct. 2011, doi: 10.1002/adma.201102795.

T. Rouxel and S. Yoshida, “The fracture toughness of inorganic glasses,” Journal of the American Ceramic Society, vol. 100, no. 10, pp. 4374–4396, Oct. 2017, doi: 10.1111/jace.15108.

J. Sehgal and S. Ito, “A new low-brittleness glass in the soda-lime-silica glass family,” Journal of the American Ceramic Society, vol. 81, no. 9, pp. 2485–2488, Jan. 2005, doi: 10.1111/j.1151-2916.1998.tb02649.x.

K. S. R. Karlsson and L. Wondraczek, “Strengthening of Oxide Glasses,” Encyclopedia of Glass Science, Technology, History, and Culture, pp. 391–404, Feb. 2021, doi: 10.1002/9781118801017.CH3.12.

R. Sajzew and L. Wondraczek, “Thermal strengthening of low-expansion glasses and thin-walled glass products by ultra-fast heat extraction,” Journal of the American Ce-ramic Society, vol. 104, no. 7, pp. 3187–3197, 2021, doi: 10.1111/jace.17759.

R. Gy, “Ion exchange for glass strengthening,” Mater Sci Eng B Solid State Mater Adv Technol, vol. 149, no. 2, pp. 159–165, 2008, doi: 10.1016/j.mseb.2007.11.029.

A. K. Varshneya, “Chemical Strengthening of Glass: Lessons Learned and Yet To Be Learned,” Int J Appl Glass Sci, vol. 1, no. 2, pp. 131–142, 2010, doi: https://doi.org/10.1111/j.2041-1294.2010.00010.x.

L. Wondraczek, E. Bouchbinder, A. Ehrlicher, J. C. Mauro, R. Sajzew, and M. M. Smedskjaer, “Advancing the Mechanical Performance of Glasses: Perspectives and Challenges,” Advanced Materials, vol. 34, no. 14, p. 2109029, Apr. 2022, doi: 10.1002/ADMA.202109029.

E. Guadagnino, M. Guglielmi, and F. Nicoletti, “Glass: The best material for pharma-ceutical packaging,” Int J Appl Glass Sci, vol. 13, no. 3, pp. 281–291, Jul. 2022, doi: 10.1111/IJAG.16559.

B. P. V Heiz et al., “Ultrathin Fluidic Laminates for Large-Area Façade Integration and Smart Windows,” Advanced Science, vol. 4, no. 3, p. 1600362, Mar. 2017, doi: 10.1002/ADVS.201600362.

S. Karlsson, S. Ali, R. Limbach, M. Strand, and L. Wondraczek, “Alkali salt vapour deposition and in-line ion exchange on flat glass surfaces,” Glass Technology: Europe-an Journal of Glass Science and Technology Part A, vol. 56, no. 6, pp. 203–213, Dec. 2015, doi: 10.13036/1753-3546.56.6.203.

S. Karlsson, L. Wondraczek, S. Ali, and B. Jonson, “Trends in effective diffusion coef-ficients for ion-exchange strengthening of soda-lime-silicate glasses,” Front Mater, vol. 4, p. 13, Apr. 2017, doi: 10.3389/fmats.2017.00013.

G. Sani, R. Limbach, J. Dellith, İ. Sökmen, and L. Wondraczek, “Surface damage re-sistance and yielding of chemically strengthened silicate glasses: From normal indenta-tion to scratch loading,” Journal of the American Ceramic Society, vol. 104, no. 7, pp. 3167–3186, 2021, doi: 10.1111/jace.17758.

C. Ragoen, M. A. T. Marple, S. Sen, T. Lambricht, and S. Godet, “Structural modifica-tions induced by Na+/K+ ion exchange in silicate glasses: A multinuclear NMR spec-troscopic study,” J Non Cryst Solids, vol. 474, no. August, pp. 9–15, 2017, doi: 10.1016/j.jnoncrysol.2017.08.006.

C. Ragoen, S. Sen, T. Lambricht, and S. Godet, “Effect of Al2O3 content on the me-chanical and interdiffusional properties of ion-exchanged Na-aluminosilicate glasses,” J Non Cryst Solids, vol. 458, pp. 129–136, 2017, doi: 10.1016/j.jnoncrysol.2016.12.019.

S. Karlsson et al., “Mechanical, thermal, and structural investigations of chemically strengthened Na2O–CaO–Al2O3–SiO2 glasses,” Front Mater, vol. 9, no. October, pp. 1–19, 2022, doi: 10.3389/fmats.2022.953759.

C. Calahoo, J. W. Zwanziger, and I. S. Butler, “Mechanical-Structural Investigation of Ion-Exchanged Lithium Silicate Glass using Micro-Raman Spectroscopy,” Journal of Physical Chemistry C, vol. 120, no. 13, pp. 7213–7232, 2016, doi: 10.1021/acs.jpcc.6b01720.

F. Bengtsson, I. B. Pehlivan, L. Österlund, and S. Karlsson, “Alkali ion diffusion and structure of chemically strengthened TiO2 doped soda-lime silicate glass,” J Non Cryst Solids, vol. 586, no. March, 2022, doi: 10.1016/j.jnoncrysol.2022.121564.

A. K. Varshneya, G. Macrelli, S. Yoshida, S. H. Kim, A. L. Ogrinc, and J. C. Mauro, “Indentation and abrasion in glass products: Lessons learned and yet to be learned,” Int J Appl Glass Sci, no. October 2021, pp. 1–30, 2021, doi: 10.1111/ijag.16549.

S. Karlsson, B. Jonson, and C. Stålhandske, “The technology of chemical glass strengthening - A review,” Glass Technology: European Journal of Glass Science and Technology Part A, vol. 51, no. 2, pp. 41–54, 2010.

P. J. Lezzi, Q. R. Xiao, M. Tomozawa, T. A. Blanchet, and C. R. Kurkjian, “Strength increase of silica glass fibers by surface stress relaxation: A new mechanical strength-ening method,” J Non Cryst Solids, vol. 379, pp. 95–106, Nov. 2013, doi: 10.1016/J.JNONCRYSOL.2013.07.033.

T. M. Gross et al., “Glass with hydration-induced compressive stress profiles,” Journal of the American Ceramic Society, vol. 105, no. 4, pp. 2527–2535, Apr. 2022, doi: 10.1111/JACE.18191.

T. M. Gross and J. Wu, “Design of mechanically advantaged glasses with hydration-induced stress profiles,” Int J Appl Glass Sci, vol. 14, no. 1, pp. 18–26, Jan. 2023, doi: 10.1111/IJAG.16597.

P. Kiefer et al., “Density, elastic constants and indentation hardness of hydrous soda-lime-silica glasses,” J Non Cryst Solids, vol. 521, p. 119480, Oct. 2019, doi: 10.1016/J.JNONCRYSOL.2019.119480.

T. Waurischk et al., “Crack Growth in Hydrous Soda-Lime Silicate Glass,” Front Mater, vol. 7, p. 66, Mar. 2020, doi: 10.3389/fmats.2020.00066.

T. Kishii, “Surface stress meters utilising the optical waveguide effect of chemically tempered glasses,” Opt Lasers Eng, vol. 4, no. 1, pp. 25–38, 1983, doi: 10.1016/0143-8166(83)90004-0.

S. Reiß, S. Krischok, and E. Rädlein, “Comparative study of weather induced corro-sion mechanisms of toughened and normal float glasses,” Glass Technology: Europe-an Journal of Glass Science and Technology Part A, vol. 60, no. 2, pp. 33–44, 2019, doi: 10.13036/17533546.60.2.020.

S. Sawamura, R. Limbach, H. Behrens, and L. Wondraczek, “Lateral deformation and defect resistance of compacted silica glass: Quantification of the scratching hardness of brittle glasses,” J Non Cryst Solids, vol. 481, pp. 503–511, 2018, doi: 10.1016/j.jnoncrysol.2017.11.035.

S. Sawamura, R. Limbach, S. Wilhelmy, A. Koike, and L. Wondraczek, “Scratch-induced yielding and ductile fracture in silicate glasses probed by nanoindentation,” Journal of the American Ceramic Society, vol. 102, no. 12, pp. 7299–7311, Dec. 2019, doi: 10.1111/jace.16679.

S. Sawamura and L. Wondraczek, “Scratch hardness of glass,” Phys Rev Mater, vol. 2, no. 9, p. 92601, 2018, doi: 10.1103/PhysRevMaterials.2.092601.

M. E. Nordberg, E. L. Mochel, H. M. Garfinkel, and J. S. Olcott, “Strengthening by Ion Exchange,” Journal of the American Ceramic Society, vol. 47, no. 5, pp. 215–219, 1964, doi: 10.1111/j.1151-2916.1964.tb14399.x.

R. F. Bartholomew, B. L. Butler, H. L. Hoover, and C. K. Wu, “Infrared Spectra of a Water-Containing Glass,” Journal of the American Ceramic Society, vol. 63, no. 9–10, pp. 481–485, Sep. 1980, doi: 10.1111/J.1151-2916.1980.TB10748.X.

A. Stuke, H. Behrens, B. C. Schmidt, and R. Dupree, “H2O speciation in float glass and soda lime silica glass,” Chem Geol, vol. 229, no. 1–3, pp. 64–77, 2006, doi: 10.1016/j.chemgeo.2006.01.012.

C.-K. Wu, “Nature of Incorporated Water in Hydrated Silicate Glasses,” Journal of the American Ceramic Society, vol. 63, no. 7–8, pp. 453–457, Jul. 1980, doi: 10.1111/j.1151-2916.1980.tb10211.x.

R. H. Doremus, “Exchange and diffusion of ions in glass,” Journal of Physical Chemis-try, vol. 68, no. 8, pp. 2212–2218, 1964, doi: 10.1021/j100790a031.

Y. A. Gösterişlioğlu, A. E. Ersundu, M. Çelikbilek Ersundu, and Sökmen, “Investigation the effect of weathering on chemically strengthened flat glasses,” J Non Cryst Solids, vol. 544, no. June, 2020, doi: 10.1016/j.jnoncrysol.2020.120192.

X. Li, L. Jiang, J. Liu, M. Wang, J. Li, and Y. Yan, “Insight into the interaction between water and ion-exchanged aluminosilicate glass by nanoindentation,” Materials, vol. 14, no. 11, pp. 1–12, 2021, doi: 10.3390/ma14112959.

R. Tandon and D. J. Green, “Indentation Behavior of Ion‐Exchanged Glasses,” Journal of the American Ceramic Society, vol. 73, no. 4, pp. 970–977, 1990, doi: 10.1111/j.1151-2916.1990.tb05145.x.

A. Talimian and V. M. Sglavo, “Can annealing improve the chemical strengthening of thin borosilicate glass?,” J Non Cryst Solids, vol. 465, pp. 1–7, 2017, doi: 10.1016/j.jnoncrysol.2017.03.038.

W. A. Lanford, K. Davis, P. Lamarche, T. Laursen, R. Groleau, and R. H. Doremus, “Hydration of soda-lime glass,” J Non Cryst Solids, vol. 33, no. 2, pp. 249–266, Jun. 1979, doi: 10.1016/0022-3093(79)90053-X.

T. Fett, J. P. Guin, and S. M. Wiederhorn, “Stresses in ion-exchange layers of soda-lime-silicate glass,” Fatigue Fract Eng Mater Struct, vol. 28, no. 6, pp. 507–514, 2005, doi: 10.1111/j.1460-2695.2005.00888.x.

G. N. B. M. B. M. de Macedo, S. Sawamura, and L. Wondraczek, “Lateral hardness and the scratch resistance of glasses in the Na2O-CaO-SiO2 system,” J Non Cryst Solids, vol. 492, pp. 94–101, 2018, doi: 10.1016/j.jnoncrysol.2018.04.022.

D. R. Tadjiev and R. J. Hand, “Surface hydration and nanoindentation of silicate glass-es,” J Non Cryst Solids, vol. 356, no. 2, pp. 102–108, 2010, doi: 10.1016/j.jnoncrysol.2009.10.005.

S. S. Kistler, “Stresses in Glass Produced by Nonuniform Exchange of Monovalent Ions,” Journal of the American Ceramic Society, vol. 45, no. 2, pp. 59–68, 1962, doi: 10.1111/j.1151-2916.1962.tb11081.x.

A. Michalske and B. C. Bunker, Effect of Surface Stress on Stress Corrosion of Sili-cate Glass, no. V. International Congress on Fracture (ICF), 1989. doi: 10.1016/b978-0-08-034341-9.50256-4.

M. Takata, M. Tomozawa, and E. B. Watson, “Effect of Water Content on Mechanical Properties of Na2O-SiO2 Glasses,” Journal of the American Ceramic Society, vol. 65, no. 9, pp. c156–c157, Sep. 1982, doi: 10.1111/j.1151-2916.1982.tb10525.x.

B. C. Bunker, G. W. Arnold, E. K. Beauchamp, and D. E. Day, “Mechanisms for alkali leaching in mized-NaK silicate glasses,” J Non Cryst Solids, vol. 58, no. 2–3, pp. 295–322, 1983, doi: 10.1016/0022-3093(83)90031-5.

Downloads

Published

2023-08-16

How to Cite

Sani, G., Sajzew, R., Limbach, R., Sawamura, S., Koike, A., & Wondraczek, L. (2023). Surface Hardness and Abrasion Threshold of Chemically Strengthened Soda-Lime Silicate Glasses After Steam Processing. Glass Europe, 1, 13–24. https://doi.org/10.52825/glass-europe.v1i.435
Received 2023-05-15
Accepted 2023-06-27
Published 2023-08-16

Funding data