Viscous Sintering of Acid Leached Glass Powders




Glass Powder, Viscous Sintering, Acid-Leaching, Sinter Retardation


The process of viscous flow sintering is a phenomenon that is closely linked to the surface properties of the glass particles. In this work, we studied the extreme case of acid-leaching of soda-lime-silicate glass beads of two different particle size distributions and its effects on non-isothermal viscous sintering of powder compacts. Depth profiling of the chemical composition after leaching revealed a near-surface layer depleted in alkali and alkaline earth ions, associated with concurrent hydration as mass loss was detected by thermogravimetry. Heating microscopy showed that acid treatment of glasses shifted the sinter curves to higher temperatures with increasing leaching time. Modelling of the shrinkage with the cluster model predicted a higher viscosity of the altered surface layer, while analysis of the time scales of mass transport of mobile species (Na+, Ca2+ and H2O) during isochronous sintering revealed that diffusion of Na+ can compensate for concentration gradients before sintering begins. Also, exchanged water species can diffuse out of the altered layer, but the depletion of Ca2+ in the altered surface layer persists during the sinter interval, resulting in a glass with higher viscosity, which causes sintering to slow down.


Download data is not yet available.


A. Shenoy, N. Shenoy, “Dental ceramics: An update”, J. Conserv. Dent., vol. 13, pp. 195–203, 2010, doi:

E. D. Zanotto, “A bright future for glass-ceramics”, J. Am. Ceram. Soc. Bull., vol. 89, pp. 19–27, 2010.

P. Colombo, G. Brusatin, E. Bernardo, G. Scarinci, “Inertization and reuse of waste materials by vitrification and fabrication of glass-based products”, Cur. Op. Solid State Mater. Sci., vol. 7, pp. 225–239, 2003, doi:

R. G. Frieser, “A review of solder glasses”, Electrocomp. Sci. Technol., vol. 2, pp. 163–199, 1975, doi:

R. Müller, S. Reinsch, “Viscous-phase silicate processing”, in: N. P. Bansal, A. R. Boccaccini (eds.) Ceramic and composites processing methods, Wiley, Hoboken, 2012, pp. 75–144, doi:

J. Kim, S. Hwang, W. Sung, H. Kim, “Thermal and dielectric properties of glass-ceramics sintered based on diopside and anorthite composition”, J. Electroceram., vol. 23 pp. 209–213, 2009, doi:

M. T. Sebastian, H. Jantunen, “Low loss dielectric materials for LTCC applications: a review”, Int. Mat. Rev., vol. 53, pp. 57–90, 2008, doi:

H. Elsayed, M. Picicco, A. Dasan, J. Kraxner, D. Galusek, E. Bernardo, ”Glass powders and reactive silicone binder: application to digital light processing of bioactive glass-ceramic scaffolds”, Ceram. Inter., vol. 46, pp. 25299–25305, 2020, doi:

A. Dasan, P. Ożóg, J. Kraxner, H. Elsayed, E. Colusso, L. Grigolato, G. Savio, D. Galusek, E. Bernardo, "Up-Cycling of LCD Glass by Additive Manufacturing of Porous Translucent Glass Scaffolds", Materials, vol. 14, Art. no. 5083, 2022, doi:

S. Pagliuca, W. D. Faust, “Porcelain (Vitreous) enamels and industrial enameling processes - The preparation, application, and properties of enamels”, IEI, Montova, 2011, pp. 432–492.

S. Rossi, C. Zanella, R. Sommerhuber, “Influence of mill additives on vitreous enamel properties”, Mater. Des., vol. 55, pp. 880–887, 2014, doi:

R. Conradt, “Chemical durability of oxide glasses in aqueous solution: a review”, J. Am. Ceram. Soc., vol. 91, pp. 728–735, 2008, doi:

C. M. Jantzen, K. G. Brown, J. B. Pickett, “Durable glass for thousands of years”, Int. J. Appl. Glass Sci., vol. 1, pp. 38–62, 2010, doi:

R. W. Douglas, T. M. M. El-Shamy, “Reactions of glasses with aqueous solutions”, J. Am. Ceram. Soc., vol. 50, pp. 1–8, 1967, doi:

R. Doremus, “Interdiffusion of hydrogen and alkali ions in a glass surface”, J. Non-Cryst. Solids, vol. 19, pp. 137–144, 1975, doi:

H. Scholze, “Chemical durability of glasses”, J. Non-Cryst. Solids, vol. 52, pp. 91–103, 1982, doi:

E. Bernardo, G. Scarinci, S. Hreglich, G. Zangiacomi, “Effect of time and furnace atmosphere on the sintering of glasses from dismantled cathode ray tubes”, J. Eur. Ceram. Soc., vol. 27, pp. 1637-1643, 2006, doi:

J. Vasseur, F.B. Wadsworth, Y. Lavallée, D.B. Dingwell, Dehydration-driven mass loss from packs of sintering hydrous silicate glass particles, J. Am. Ceram. Soc., vol. 106, pp. 4643–4653, 2023, doi:

K. Shandarova, G. Helsch, J. Deubener, W. Dziony, L. Wondraczek, “Improving the corrosion resistance of sol-gel-derived aluminoborosilicate glass coatings by nitridation”, J. Non-Cryst. Solids, vol. 447, pp. 171–177, 2016, doi:

J. Frenkel, “Viscous flow of crystalline bodies under the action of surface tension”, J. Phys. (USSR), vol. 9, pp. 385–391,1945.

V. V. Skorokhod, “Development of the ideas of Ya. I. Frenkel' in the contemporary rheological theory of sintering”, Powder Metall. Met. Ceram., vol. 34, pp. 521–527, 1996, doi:

J. K. Mackenzie, R. Shuttleworth, “A phenomenological theory of sintering”, Proc. Phys. Soc. B., vol. 62, pp. 833–852 ,1949, doi:

R. Müller, “On the kinetics of sintering and crystallization of glass powders”, Glastech. Ber. Glass. Sci. Technol. vol. 67 C, pp. 93–98, 1994.

M. O. Prado, E.D. Zanotto, R. Müller, “Model for sintering polydispersed glass particles“, J. Non-Cryst. Solids, vol. 279, pp.169–178, 2001, doi:

J. Deubener, H. Bornhoft, S. Reinsch, R. Muller, J. Lumeau, L.N. Glebova, L.B. Glebov, “Viscosity, relaxation and elastic properties of photo-thermo-refractive glass”, J. Non-Cryst. Solids, vol. 355, pp. 126–131, 2009, doi:

D. Di Genova, A. Zandona, J. Deubener, “Unravelling the effect of nano-heterogeneity on the viscosity of silicate melts: Implications for glass manufacturing and volcanic erup-tions”, J. Non. Cryst. Solids vol. 545, Art. no. 120248, 2020, doi:

G. Meerlender, “Viskositäts-Temperaturverhalten des Standardglases I der DGG“, Glastech. Ber., vol. 47, pp. 1–3, 1974.

J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta, D. C. Allan, “Viscosity of glass-forming liquids”, Proc. Natl. Acad. Sci. U.S.A., vol. 106, pp. 19780–19784, 2009, doi:

A. Dietzel, “Praktische Bedeutung von Berechnung der Oberflächenspannung von Gläsern, Glasuren und Emails“, Sprechsaal, vol. 75, pp. 82–85, 1942.

K. C. Lyon, “Calculation of surface tensions of glasses”, J. Am. Ceram. Soc., vol. 27, pp. 186–189, 1944, doi:

A. A. Appen, “Versuch zur Klassifizierung von Komponenten nach ihrem Einfluß auf die Oberflächenspannung von Silikatschmelzen“, Silikattechn., vol. 5, pp. 11–12, 1954.

A. A. Appen, “Some "anomalies" in the properties of glass”, Travaux du IVe congres in-ternational du verre, Paris, 1956, pp. 36–40.

L. Šašek, M. Houser, “Application of mathematico-statistical methods in silicate research. 3. Determination of mathematical relations for computing the temperature dependence of surface tension and chemical composition in the field of sheet and container glass”, Sb. Vys. Sk. Chem.-Technol. Praze Chem. Technol. Silik., vol. L5, pp. 49–84, 1974.

C. A. Angell, “Spectroscopy simulation and scattering, and the medium range order prob-lem in glass”, J. Non-Cryst. Solids, vol. 73, pp. 1–17, 1985, doi:

H. Mehrer, A. W. Imre, E. Tanguep-Nijokep, “Diffusion and ionic conduction in oxide glasses”, J. Phys.: Conf. Series, vol. 106, Art. no. 012001, 2008, doi:

S. Reinsch, R. Müller, J. Deubener, H. Behrens, “Internal friction of hydrated soda-lime-silicate glasses”, J. Chem Phys., vol. 139, Art. no. 174506, 2013. doi:

J. E. Shelby, “A limited review of water diffusivity and solubility in glasses and melts”, J. Am. Ceram. Soc., vol. 91, pp. 703–708, 2008, doi:




How to Cite

Gomes Fernandes, R., Al-Mukadam, R., Bornhöft, H., Reinsch, S., Müller, R., Selle, S., & Deubener, J. (2023). Viscous Sintering of Acid Leached Glass Powders. Glass Europe, 1, 37–53.
Received 2023-08-12
Accepted 2023-11-13
Published 2023-11-23

Funding data