Dimensioning Method for PVT Collectors as Heat Source of Heat Pumps for Residential Buildings





PVT Collectors, Heat Pumps, VDI 4645, Heat Load, Design Point, Operation Modes


Photovoltaic-thermal (PVT) collectors are an emerging technology that is increasingly being used as a heat source for heat pump systems in residential buildings. However, a suitable standard methodology for sizing the PVT collectors for these systems is still not available. This paper initially provides a framework for the sizing of a PVT-heat pump system for small houses according to the German guideline VDI 4645. The dimensioning method of VDI 4645 and the sizing method for PVT collectors are incorporated in a web-based tool that is aimed to assist planners (or homeowners) during the preliminary planning of a heat pump system in single and multi-family houses. The methodology also covers the planning of systems with backup/additional heaters (e.g. gas boiler and heating rod), e.g. for buildings with limited roof areas for PVT installations. Different heat pump operation modes, i.e. monovalent, bivalent-alternative, or bivalent-parallel are also considered. A model of the IEA SHC Task44 SFH100, an existing single-family house with radiators, has been chosen as an example case to demonstrate the methodology. For the evaluation of the performance of the designed system, yearly simulations of the system are done in TRNSYS. The results show that the developed methodology provides plausible sizes for the example case. However, further development and validation are necessary to provide flexibility in system dimensioning.


Download data is not yet available.


Bundesverband Wärmepumpe (BWP), ‘Branchenstudie 2023: Marktentwicklung – Prognose – Handlungsempfehlungen’. Bundesverband Wärmepumpe (BWP) e. V., 2023.

Statista, ‘Annual sales of brine-to-water heat pumps in Europe from 1990 to 2020 with forecasts until 2030’. Accessed: Jan. 29, 2024. [Online]. Available: https://www.statista.com/statistics/1314212/brine-to-water-heat-pump-sales-in-europe/

M. Littwin, C. Lampe, M. Kirchner, B. Chhugani, P. Pärisch, and F. Giovannetti, ‘TwinPower: Integrierte Gesamtenergieversorgung von Wohngebäuden mit PV-thermischen Kollektoren als bisolare Wärmepumpenquelle’, Institut für Solarenergieforschung Hameln GmbH (ISFH), Abschlussbericht, 2020.

D. Zenhäusern, E. Bamberger, and A. Baggenstos, ‘Energiesysteme mit Photovoltaisch-Thermischen Solarkollektoren’, Institut für Solartechnik SPF, HSR Hochschule für Technik Rapperswil, Switzerland, Schlussbericht PVT Wrap-Up, Mar. 2017.

U. Leibfried, S. Asenbeck, S. Fischer, C. Twerdy, and U. Ruoff, ‘Abschlussbericht “SOLINK”: Hocheffiziente, auf intelligenter Verknüpfung von PVT- und Wärmepumpentechnik basierende Wärmeversorgung für Gebäudebestand und Neubau’, 2020.

Consolar, ‘SOLINK: Die Energiequelle für Wärmepumpen, Technische Dokumentation’. Consolar Energiesysteme, 2022.

B. Chhugani, P. Pärisch, S. Helmling, and F. Giovannetti, ‘Comparison of PVT - heat pump systems with reference systems for the energy supply of a single-family house’, Solar Energy Advances, vol. 3, p. 100031, 2023, doi: https://doi.org/10.1016/j.seja.2022.100031.

VDI 4645, ‘Planung und Dimensionierung von Heizungsanlagen mit Wärmepumpen in Ein- und Mehrfamilienhäusern’. VDI-Gesellschaft Energie und Umwelt (GEU), 2023.

Stiebel Eltron, ‘Engineering and Installation of Heat Pumps’. 2013.

Viessmann, ‘Heat pump principles’. 2020.

R. Dott, M. Y. Haller, J. Ruschenburg, F. Ochs, and J. Bony, ‘The Reference Framework for System Simulations of the IEA SHC Task 44 / HPP Annex 38, Part B: Buildings and Space Heat Load’, 2013.

Bundesverband Wärmepumpe e.V., ‘Klimakarte’, Bundesverband Wärmepumpe e.V. Accessed: Jan. 20, 2024. [Online]. Available: https://www.waermepumpe.de/normen-technik/klimakarte/

B. Chhugani, P. Paerisch, and F. Giovannetti, ‘Decarbonizing Heating Supply Systems in Existing Single-family Houses Through PVT - Heat Pump Systems’, presented at the EuroSun, Kassel, Germany, 2022.

DIN EN 12831-1, ‘Energy performance of buildings - Method for calculation of the design heat Ioad Part 1: Space heating Ioad, Module M3-3’. DIN Deutsches Institut für Normung e V, 2017.

T. Loga, B. Stein, N. Diefenbach, and R. Born, Eds., Deutsche Wohngebäudetypologie: beispielhafte Maßnahmen zur Verbesserung der Energieeffizienz von typischen Wohngebäuden, 2., erw. Aufl. Darmstadt: IWU, 2015.

DIN EN 12831-3, ‘Energy performance of buildings – Method for calculation of the design heat load – Part 3: Domestic hot water systems, heat load and characterization of needs, Module M8-2, M8-3’; DIN Deutsches Institut für Normung e. V., 2021.

D. Fischer, K. B. Lindberg, H. Madani, and C. Wittwer, ‘Impact of PV and variable prices on optimal system sizing for heat pumps and thermal storage’, Energy and Buildings, vol. 128, pp. 723–733, Sep. 2016, doi: https://doi.org/10.1016/j.enbuild.2016.07.008.

M. Y. Haller, R. Dott, J. Ruschenburg, F. Ochs, and J. Bony, ‘The Reference Framework for System Simulations of the IEA SHC Task 44 / HPP Annex 38, Part A: General Simulation Boundary Conditions Report C1 Part A’, 2013.

R. Vollmer, J. Wapler, and S. Hess, ‘Quellen-Verfügbarkeit für Wärmepumpen-Systeme in Mehrfamilienhäusern’, Bericht zu AP 2.1 (LowEx-Bestand Analyse), 2019.

ISO 9806, ‘Solar energy — Solar thermal collectors — Test methods’. ISO, 2013.

Deutsche Wetterdienst, ‘Open Data’. Accessed: Jan. 20, 2024. [Online]. Available: https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily

K. Timilsina, P. Paerisch, and B. Chhugani, ‘In-situ monitoring of a PVT-heat pump system with ground sources used for heating and cooling applications’, presented at the Solar World Congress, New Delhi, 2023.

B. Chhugani, P. Paerisch, M. Kirchner, M. Littwin, C. Lampe, and F. Giovannetti, ‘Model Validation and Performance Assessment of Unglazed Photovoltaic-Thermal Collectors with Heat Pump Systems’, in Proceedings of the ISES EuroSun 2020 Conference – 13th International Conference on Solar Energy for Buildings and Industry, Online: International Solar Energy Society, 2020, pp. 1–12. doi: https://doi.org/10.18086/eurosun.2020.05.13.




How to Cite

Timilsina, K., Chhugani, B., Modi, H., & Pärisch, P. (2024). Dimensioning Method for PVT Collectors as Heat Source of Heat Pumps for Residential Buildings. International Sustainable Energy Conference - Proceedings, 1. https://doi.org/10.52825/isec.v1i.1141

Conference Proceedings Volume


Energy Flexibility through Sector Coupling