Concept and Modeling of Participation Opportunity for Large-Scale Renewable Energy Plants
DOI:
https://doi.org/10.52825/pv-symposium.v1i.1121Keywords:
Citizen Participation, Self-Consumption, Renewable Energy Model, SimulationAbstract
Citizen participation in the energy transition is desirable for many reasons: it increases acceptance of renewable energies, fulfils the wish to make one's own contribution to the energy transition and generates relevant parts of the necessary capital for the transformation of the energy system. This paper presents a scalable participation concept for the German legal framework which allows citizens to invest in and partially consume electricity from large-scale renewable energy plants at the time of generation. The developed concept provides a method for direct financial involvement via a direct contract with local electricity suppliers and virtual self-consumption by matching demand with PV generation – without the need for property ownership or new subsidies. Different consumer types and participants shares of a large-scale PV plant are modelled and simulated for the years 2019-2021. The financial advantage of citizen participation depends on the type of energy generation plant, yearly (solar) yield, on the remuneration for the surplus energy quantity, on the electricity procurement costs, on the customer's energy consumption, on the amount, and time flexibility and others. This paper shows that all analysed consumer types have the potential to profit from the model every year, although simulations are dependent on variable annual factors and assume the energy supplier's short-term procurement. The approach’s scalability and organizational simplicity could expedite the development of local participatory projects and contribute significantly to Germany's energy transition.
Downloads
References
B. Best, "Energiewende und Bürgerbeteiligung: Multi-Level-Konstellationsanalysen des Beteiligungsprozesses der InnovationCity Ruhr – Modellstadt Bottrop," Springer Fachmedien Wiesbaden, 2019, ISBN: 9783658261832
Deutsche Energie-Agentur GmbH (dena), Ed., "Energy Communities: Beschleuniger der dezentralen Energiewende," 2022.
B. Matthiss, K. Strecker, A. Azzam and J. Binder, "NEMoGrid - New Energy Business Models in the Distribution Grid: Abschlussbericht ZSW: Entwicklung, Simulation und Validierung relevanter Geschäftsmodelle," Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), 2021. [Online]. Available: https://nemogrid.eu/wp-content/uploads/NemoGrid_Endbericht_ZSW.pdf
J. Gasten, J. Klaus and W. Cramer, "pebbles - Ein Plattform-Konzept für eine kosten-optimierte Energiewende mit Hilfe lokaler Energiemärkte," 2021. [Online]. Available: https://pebbles-projekt.de/wp-content/uploads/2021/04/pebbles_Whitepaper.pdf
B. Haller, O. Langniß, A. Reuter, and N. Spengler, "1,5° Csellsius: Energiewende zellulär - partizipativ - vielfältig umgesetzt," Stuttgart, 2020. [Online]. Available: https://smartgrids-bw.net/public/uploads/2022/06/CSells_Buch_15GradCSellsius_WEB_20201209_compressed.pdf
J. Radtke, "Bürgerenergie in Deutschland: Partizipation zwischen Gemeinwohl und Rendite, " Wiesbaden: Springer VS, 2016, ISBN: 9783658146269
Verband kommunaler Unternehmen e.V. (VKU), Ed., "Stadtwerke und Bürgerbeteiligung: Energieprojekte gemeinsam umsetzen," 2016. [Online]. Available: https://www.unendlich-viel-energie.de/media/file/444.VKU_AEE_Broschuere_Buerger beteiligung.PDF
F. Braeuer, M. Kleinebrahm, E. Naber, F. Scheller, and R. McKenna, "Optimal system design for energy communities in multi-family buildings: the case of the German Tenant Electricity Law," Applied Energy, vol. 305, p. 117884, 2022, doi: https://doi.org/10.1016/j.apenergy.2021.117884.
K. Ahlemeyer, K.-M. Griese, T. Wawer, and B. Siebenhüner, "Success factors of citizen energy cooperatives in north western Germany: a conceptual and empirical review," Energ Sustain Soc, vol. 12, no. 1, 2022, doi: https://doi.org/10.1186/s13705-022-00354-4.
F. Belmar, P. Baptista, and D. Neves, "Modelling renewable energy communities: assessing the impact of different configurations, technologies and types of participants," Energ Sustain Soc, vol. 13, no. 1, 2023, doi: https://doi.org/10.1186/s13705-023-00397-1.
M. Klein, A. Ziade, and L. de Vries, "Aligning prosumers with the electricity wholesale market – The impact of time-varying price signals and fixed network charges on solar self-consumption," Energy Policy, vol. 134, p. 110901, 2019, doi: https://doi.org/10.1016/j.enpol.2019.110901.
M. Klein and M. Deissenroth, "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, vol. 109, pp. 270–278, 2017, doi: https://doi.org/10.1016/j.enpol.2017.06.067.
J. Klamka, A. Wolf, and L. G. Ehrlich, "Photovoltaic self-consumption after the support period: Will it pay off in a cross-sector perspective?," Renewable Energy, vol. 147, pp. 2374–2386, 2020, doi: https://doi.org/10.1016/j.renene.2019.10.033.
§ 20 EEG 2023, 2023. [Online]. Available: https://www.gesetze-im-internet.de/eeg_2014/__20.html
§ 21a EEG 2023, 2023. [Online]. Available: https://www.gesetze-im-internet.de/eeg_2014/__21a.html
The MathWorks, Inc., MATLAB, 2022. Accessed: Feb. 2, 2024. [Online]. Available: https://www.mathworks.com/
CAMS: 'Generated using Copernicus Atmosphere Monitoring Service Information [2019]'. [Online] . Available: https://atmosphere.copernicus.eu/
Holmgren et al., (2018). pvlib python: a python package for modeling solar energy systems. Journal of Open Source Software, 3(29), 884, https://doi.org/10.21105/joss.00884
DWD Climate Data Center, Ed., "Index of/climate_environment/CDC/observations_germany/climate/10_minutes/air_temperature/historical," 2023. Accessed: Nov. 13, 2023. [Online]. Available: https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/10_minutes/air_temperature/historical/
C. Kost, "Stromgestehungskosten erneuerbare Energien," Fraunhofer ISE, 2021
T. Tjaden, J. Bergner, J. Weniger, and V. Quaschning, "Repräsentative elektrische Lastprofile für Wohngebäude in Deutschland auf 1-sekündiger Datenbasis," Hochschule für Technik und Wirtschaft. Accessed: Nov. 12 2023.
Statistisches Bundesamt, "Stromverbrauch der privaten Haushalte nach Haushaltsgrößenklassen," Sep. 2023. Accessed: Feb. 3 2024. [Online]. Available: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/private-haushalte/Tabellen/stromverbrauch-haushalte.html#fussnote-1-133562
Meteorologische Grundlagen für die Technische Gebäudeausrüstung, VDI 4710, Verein deutscher Ingenieure (VDI), 2013.
Eberwerk.de, “Unsere Stromtarife”, Accessed: Feb 3 2024. [Online]. Available: https://eberwerk.de/strom/
Energie-charts.info, “Jährliche Börsenstrompreise in Deutschland”, Accessed: Jan 10 2024. [Online]. Available: https://www.energy-charts.info/charts/price_average/chart.htm?l=de&c=DE&interval=year&year=2021
BDEW Bundesverband der Energie- und Wasserwirtschaft e.V, “BDEW-Strompreisanalyse Dezember 2023“, 12.12.2023
Netztransparenz.de, "Marktwertübersicht," Accessed: Jan. 10 2024. [Online]. Available: https://www.netztransparenz.de/de-de/Erneuerbare-Energien-und-Umlagen/EEG/Transparenzanforderungen/Marktpr%C3%A4mie/Marktwert%C3%BCbersicht
Bundesnetzagentur | SMARD.de, "Marktdaten," Accessed: Jan. 10 2024. [Online]. Available: https://www.smard.de/home/downloadcenter/download-marktdaten/
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Theresa Liegl, Toni Goeller, Simon Schramm
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-07-07
Published 2024-08-05