How Much Does the Sun Power Your EV?
Simulation Study on Wallbox Efficiency
DOI:
https://doi.org/10.52825/pv-symposium.v2i.2650Keywords:
Solar, Electric Vehicle, Energy Management, SimulationAbstract
Solar smart charging of electric vehicles is becoming increasingly important for several reasons. This paper uses a detailed time series simulation to show which are the most important influences on the success for the individual user. More than 100,000 runs were analyzed. A key finding is the influence of charging and driving behavior and the amount of excess solar energy on the degree of solar energy used by the electric vehicle. Wallbox related parameters such as dead time and control accuracy have less impact on cost savings. In addition, user behavior and different energy management strategies were analyzed within the simulation.
Downloads
References
[1] Agora Energiewende, ‘European Energy Transition 2030: The Big Picture’, Berlin, 2019.
[2] International Renewable Energy Agency IRENA, Ed., World Energy Transitions Outlook 2024: 1.5°C pathway. Abu Dhabi, 2024.
[3] International Energy Agency, Global EV Outlook 2023. 2023 [Online]. Available: 10.1787/cbe724e8-en.
[4] R. Reibsch et al., ‘Low voltage grid resilience: Evaluating electric vehicle charging strat-egies in the context of the grid development plan Germany’, eTransportation, vol. 20, p. 100323, May 2024 [Online]. Available: 10.1016/j.etran.2024.100323.
[5] R. A. Ibrahim et al., ‘Analysis of multidimensional impacts of electric vehicles penetration in distribution networks’, Sci. Rep., vol. 14, no. 1, p. 27854, Nov. 2024 [Online]. Availa-ble: 10.1038/s41598-024-77662-6.
[6] T. Unterluggauer et al., ‘Impact of Electric Vehicle Charging Synchronization on the Ur-ban Medium Voltage Power Distribution Network of Frederiksberg’, World Electr. Veh. J., vol. 13, no. 10, p. 182, Oct. 2022 [Online]. Available: 10.3390/wevj13100182.
[7] M. Von Bonin et al., ‘Impact of Dynamic Electricity Tariff and Home PV System Incen-tives on Electric Vehicle Charging Behavior: Study on Potential Grid Implications and Economic Effects for Households’, Energies, vol. 15, no. 3, p. 1079, Feb. 2022 [Online]. Available: 10.3390/en15031079.
[8] N. Damianakis et al., ‘Grid impact of photovoltaics, electric vehicles and heat pumps on distribution grids — An overview’, Appl. Energy, vol. 380, p. 125000, Feb. 2025 [Online]. Available: 10.1016/j.apenergy.2024.125000.
[9] UScale GmbH, ‘Private Charging-Studie 2023’, UScale GmbH, 2023 [Online]. Available: https://uscale.digital/wp-content/uploads/2022/10/Private-Charging-Studie-2022-Ausschnitt.pdf.
[10] Nationale Plattform Zukunft der Mobilität, ‘Kundenakzeptanz als Schlüssel für den Markthochlauf der Elektromobilität’, Berlin, 2021 [Online]. Available: https://www.plattform-zukunft-mobilitaet.de/wp-content/uploads/2021/10/NPM_AG2_Kundenakzeptanz.pdf.
[11] M. Shepero et al., ‘Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review’, Renew. Sustain. Energy Rev., vol. 89, pp. 61–71, Jun. 2018 [Online]. Available: 10.1016/j.rser.2018.02.034.
[12] J. Munkhammar et al., ‘Quantifying self-consumption of on-site photovoltaic power gen-eration in households with electric vehicle home charging’, Sol. Energy, vol. 97, pp. 208–216, Nov. 2013 [Online]. Available: 10.1016/j.solener.2013.08.015.
[13] F. Samweber et al., ‘Simulation von Photovoltaik-Eigenverbrauch mit Elektrofahrzeugen (Teil 1)’, BWK, vol. 66, no. 1/2, pp. 66–69, 2014.
[14] F. Samweber et al., ‘Ladesteuerung zur Erhöhung des Photovoltaik-Eigenverbrauchs (Teil 2)’, BWK, vol. 66, no. 3, pp. 46–49, 2014.
[15] B. Wille-Hausmann et al., ‘BIDIREKTIONALES LADEN: Status, Trends und Potenziale’, Fraunhofer-Institut für Solare Energiesysteme (ISE), Freiburg, Jun. 2023.
[16] M. Hofmann et al., ‘Solare Elektromobilität – welches E‐Auto fährt am besten mit der Sonne?’, in 32. Symposium Photovoltaische Solarenergie, Bad Staffelstein, 2017.
[17] H. Martin et al., ‘Using rooftop photovoltaic generation to cover individual electric vehicle demand—A detailed case study’, Renew. Sustain. Energy Rev., vol. 157, p. 111969, Apr. 2022 [Online]. Available: 10.1016/j.rser.2021.111969.
[18] A. Ostermann et al., ‘Project Bidirectional Charging Management—Insights and Evalua-tion of the Field Trial’, in Antriebe und Energiesysteme von morgen 2022, A. Heintzel, Ed. Wiesbaden: Springer Fachmedien Wiesbaden, 2023, pp. 165–182 [Online]. Availab-le: https://link.springer.com/10.1007/978-3-658-41439-9_13.
[19] HTW Berlin et al., (2023), Project homepage: Wallbox-Inspektion, Research Project: Wallbox-Inspektion. [Online]. Available: https://solar.htw-berlin.de/forschungsgruppe/wallbox-inspektion/.
[20] K. Behrens, ‘Basic measurements of radiation at station Lindenberg’. 2017[Online]. Availablehttps://doi.pangaea.de/10.1594/PANGAEA.883232.
[21] T. Tjaden et al., ‘Representative electrical load profiles of residential buildings in Germa-ny with a temporal resolution of one second’, 2015[Online]. Available: http://dx.doi.org/10.13140/RG.2.1.3713.1606
[22] ‘synthetische Lastprofile synPRO’, Fraunhofer Institut für Solare Energiesysteme (ISE), Freiburg, Mar. 2014.
[23] infas Institut für angewandte Sozialwissenschaft GmbH et al., ‘Mobilität in Deutschland - MiD Ergebnisbericht’, Bonn, 2018.
[24] C. Gaete-Morales et al., ‘An open tool for creating battery-electric vehicle time series from empirical data, emobpy’, Sci. Data, vol. 8, no. 1, p. 152, Jun. 2021 [Online]. Availa-ble: 10.1038/s41597-021-00932-9.
[25] N. Wulff et al., ‘Vehicle Energy Consumption in Python (VencoPy): Presenting and Demonstrating an Open-Source Tool to Calculate Electric Vehicle Charging Flexibility’, Energies, vol. 14, no. 14, p. 4349, Jul. 2021 [Online]. Available: 10.3390/en14144349.
[26] Forschungsstelle für Energiewirtschaft e. V. (FfE), (2020,), Synthetic Sample Mobility Profile by Household Types (Germany). [Online]. Available: openda-ta.ffe.de/dataset/synthetic-sample-mobility-profile-by-household-types-germany.
[27] Statistisches Bundesamt, Ed., Zensus Datenbank. 2022 [Online]. Available: https://ergebnisse.zensus2022.de/datenbank/online.
[28] J. Weniger and N. Orth, (2024, September.), simbat: simple PV-battery system model, Hochschule für Technik und Wirtschaft HTW Berlin. [Online]. Available: https://solar.htw-berlin.de.
[29] K. Sevdari et al., ‘Experimental validation of onboard electric vehicle chargers to im-prove the efficiency of smart charging operation’, Sustain. Energy Technol. Assess., vol. 60, p. 103512, Dec. 2023 [Online]. Available: 10.1016/j.seta.2023.103512.
[30] A. Scherrer et al., ‘Early Adopter von E-Fahrzeugen: Ladeleistungen, Eigenerzeugung und Einstellungen zum Lademanagement’, Energiewirtschaftliche Tagesfragen, no. 11–2019, pp. 23–26, Nov. 2019.
[31] NOW GmbH, Ed., Einfach zuhause laden Studie zum Ladeverhalten von Privatperso-nen mit Elektrofahrzeug und eigener Wallbox. 2024 [Online]. Available: www.nationale-leitstelle.de.
[32] ADAC e.V., (2022, September.13), Elektroauto und Ladeverluste: So können Sie Kos-ten vermeiden. [Online]. Available: https://www.adac.de/rund-ums-fahrzeug/elektromobilitaet/laden/ladeverluste-elektroauto-studie/.
[33] J. Weniger et al., ‘Stromspeicher-Inspektion 2021’, Hochschule für Technik und Wirt-schaft Berlin, Berlin, 2021.
[34] T. Kern et al., ‘Revenue opportunities by integrating combined vehicle-to-home and ve-hicle-to-grid applications in smart homes’, Appl. Energy, vol. 307, p. 118187, Feb. 2022 [Online]. Available: 10.1016/j.apenergy.2021.118187.
[35] D. Römer and J. Salzgeber, ‘KfW-Energiewendebarometer 2024’, KfW Research, Frankfurt am Main, 2024 [Online]. Available: www.kfw.de
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Joseph Bergner, Nico Orth, Volker Quaschning

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-09-20
Published 2025-11-21
Funding data
-
Bundesministerium für Wirtschaft und Klimaschutz
Grant numbers 01MV23027B