Building a real-world traffic micro-simulation scenario from scratch with SUMO




Simulation of Urban Mobility (SUMO) is a powerful traffic simulation program which can work at different scales, from sub-microscopic to macroscopic. Depending on the available input dataset, it is possible to build lots of different configurations, changing routing and car-follow algorithms, and many parameters. Building a basic SUMO scenario is a multi-step activity involving the followings: preparing the transportation network, traffic definition, setting a routing algorithm, and running the simulation. The aim of the present work is to show a detailed real case study explaining how to build a complete scenario and run simulations, starting from the preparation of the network from Open Street Map. The last part of the present paper is about how to use the SUMO output files with MongoDB in order to keep track of significant information resulting from each simulation.


Alvarez Lopez, P., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.P., Hilbrich, R., Lücken, L., Rummel, J., Wagner, P., and Wießner, E. (2018). Microscopic Traffic Simulation using SUMO. IEEE Intelligent Transportation Systems Conference (ITSC).

Aminia, S., Tilga, G., Buscha, F. (2019). Calibration of mesoscopic simulation models for urban corridors based on the macroscopic fundamental diagram. Proceedings of hEART 2019. 8th Symposium of the European Association for Research in Transportation.

Bachechi, C., Po, L. (2019). Traffic Analysis in a Smart City. WI’19 Companion, 2019, Thessaloniki, Greece, ACM.

Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), pp. 269–271.

Gawron, C. (1998). An Iterative Algorithm to Determine the Dynamic User Equilibrium in a Traffic Simulation Model. International Journal of Modern Physics C Vol. 9 (3), pp. 393-407

Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P. (2002). An Example of Microscopic Car Models Validation using the open source Traffic Simulation SUMO. Proceedings of Simulation in Industry, 14th European Simulation Symposium. SCS European Publishing House (pp. 318-322). Dresden.

Krauß, S. (1998). Microscopic Modeling of Traffic Flow: Investigation of Collision Free Vehicle Dynamics. Hauptabteilung Mobilität und Systemtechnik des DLR Köln, ISSN 1434-8454

Maiorov, E.R., Ludan, I.R., Motta, J.D. (2019). Developing a microscopic city model in SUMO simulation system. Journal of Physics Conference Series 1368 0420812019.

McNally, M.G. (2000). The activity-based approach. UCI-ITS-AS-WP-00-4, Center for Activity Systems Analysis, University of California, Irvine, CA.

McNally, M. G., Rindt C. (2007). The Activity Based Approach. Handbook of Transport Modelling. Emerald Group Publishing Limited. (pp. 55-73). ISBN: 978-0-08-045376-7.

Po, L., Rollo, F., Bachechi, C., Corni, A. (2019). From Sensors Data to Urban Traffic Flow Analysis. IEEE International Smart Cities Conference ISC2 2019. Casablanca.

Schweizer, J. (2013). Sumopy: an advanced simulation suite for sumo. Simulation of Urban MObility User Conference. Springer, Berlin, Heidelberg.

Schweizer, J., Poliziani, C., Rupi, F., Morgano, D., Magi, M. (2021). Building a Large-Scale Micro-Simulation Transport Scenario Using Big Data. ISPRS International Journal of Geo-Information. 10, 165.

Ullah, M.R., Khattak, K.S., Khan, Z.H., Khan, M.A., Minallah, N., Khan, A.N. (2021). Vehicular Traffic Simulation Software: A Systematic Comparative Analysis. Pakistan Journal of Engineering and Technology, PakJET. Volume: 04, Number: 01, (pp. 66-78).

Web references

SUMO, Simulation of Urban MObility,, accessed on 9 February 2022

Sumo source code

SUMO whole cities scenarios

Sumo docs: Including elevation data in a network

sumo car-following-models

sumopy documentation

sumopy code on github

mongo db




How to Cite

Clemente, M. L. (2022). Building a real-world traffic micro-simulation scenario from scratch with SUMO. SUMO Conference Proceedings, 3, 215–230.



Conference papers

Funding data