Overcoming Data Scarcity in Calibrating SUMO Scenarios With Evolutionary Algorithms
DOI:
https://doi.org/10.52825/scp.v6i.2590Keywords:
Microscopic traffic simulation, Calibration, Evolutionary Algorithm, SUMO Simulation DataAbstract
Traffic simulations play a crucial role in urban planning and mobility management by providing insights into transportation systems. However, their effectiveness heavily depends on accurate demand calibration, often requiring large amounts of observational data. This poses a challenge in settings with limited data availability. In this paper, we propose a methodology for calibrating SUMO scenarios under data-scarce conditions. To contextualize our approach, we first review existing SUMO scenarios and their demand calibration strategies. We then introduce the Mannheim SUMO Traffic Model (MaST) as a case study and employ the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to optimize route probabilities as input for the existing routeSampler tool provided by SUMO. Results indicate that our method significantly improves calibration accuracy compared to baseline approaches both for 3-hour and 24-hour scenarios. While our findings suggest that the proposed methodology can support demand calibration in data-limited environments, further research is needed to assess its generalizability and effectiveness in different contexts.
Downloads
References
R. Dowling, A. Skabardonis, J. Halkias, G. McHale, and G. Zammit, "Guidelines for Calibration of Microsimulation Models: Framework and Applications", en, Transportation Research Record: Journal of the Transportation Research Board, vol. 1876, no. 1, pp. 1–9, Jan. 2004, Publisher: SAGE Publications. ISSN: 0361-1981, 2169-4052. DOI: 10.3141/1876-01. Accessed: Jan. 14, 2025. [Online]. Available: https://journals.sagepub.com/doi/10.3141/1876-01.
"Traffic analysis toolbox, volume III: guidelines for applying traffic microsimulation software", United States Department of Transportation - Federal Highway Administration, Tech. Rep. FHWA-HRT-04-040, 2004. Accessed: Jan. 14, 2025. [Online]. Available: https://ops.fhwa.dot.gov/trafficanalysistools/tat_vol3/.
J. Barceló, "Models, Traffic Models, Simulation, and Traffic Simulation", in Fundamentals of Traffic Simulation, J. Barceló, Ed., vol. 145, New York, NY: Springer New York, 2010, pp. 1–62, ser. International Series in Operations Research & Management Science. ISBN: 978-1-4419-6141-9 978-1-4419-6142-6. DOI: 10.1007/978-1-4419-6142-6_1. Accessed: Jan. 13, 2025. [Online]. Available: http://link.springer.com/10.1007/978-1-4419-6142-6_1.
M. Behrisch, and P. Hartwig, "A comparison of SUMO's count based and countless demand generation tools", en, SUMO Conference Proceedings, vol. 2, pp. 125–131, Jun. 2022. ISSN: 2750-4425. DOI: 10.52825/scp.v2i.107. Accessed: Jan. 15, 2025. [Online]. Available: https://www.tib-op.org/ojs/index.php/scp/article/view/107.
L. Bieker, D. Krajzewicz, A. Morra, C. Michelacci, and F. Cartolano, "Traffic Simulation for All: A Real World Traffic Scenario from the City of Bologna", en, in Lecture Notes in Mobility, Cham: Springer International Publishing, 2015, pp. 47–60. ISSN: 2196-5544, 2196-5552. ISBN: 978-3-319-15023-9 978-3-319-15024-6. DOI: 10.1007/978-3-319-15024-6_4. Accessed: Jan. 14, 2025. [Online]. Available: https://link.springer.com/10.1007/978-3-319-15024-6_4.
L. Codeca, R. Frank, and T. Engel, "Luxembourg SUMO Traffic (LuST) Scenario: 24 hours of mobility for vehicular networking research", en, in 2015 IEEE Vehicular Networking Conference (VNC), Kyoto, Japan: IEEE, Dec. 2015, pp. 1–8. DOI: 10.1109/vnc.2015.7385539. Accessed: Jan. 14, 2025. [Online]. Available: http://ieeexplore.ieee.org/document/7385539/.
K. Schrab, R. Protzmann, and I. Radusch, "A Large-Scale Traffic Scenario of Berlin for Evaluating Smart Mobility Applications", en, in Smart Energy for Smart Transport, E. G. Nathanail, N. Gavanas, and G. Adamos, Eds., Cham: Springer Nature Switzerland, 2023, pp. 276–287, ser. Lecture Notes in Intelligent Transportation and Infrastructure. ISBN: 978-3-031-23720-1 978-3-031-23721-8. DOI: 10.1007/978-3-031-23721-8_24. Accessed: Jan. 14, 2025. [Online]. Available: https://link.springer.com/10.1007/978-3-031-23721-8_24.
M. Gueriau, and I. Dusparic, "Quantifying the impact of connected and autonomous vehicles on traffic efficiency and safety in mixed traffic", en, in 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece: IEEE, Sep. 2020, pp. 1–8. ISBN: 978-1-7281-4149-7. DOI: 10.1109/ITSC45102.2020.9294174. Accessed: Jan. 14, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/9294174/.
S. C. Lobo, S. Neumeier, E. M. G. Fernandez, and C. Facchi, InTAS – The Ingolstadt Traffic Scenario for SUMO, Nov. 2020. DOI: 10.48550/arXiv.2011.11995. Accessed: Jan. 14, 2025. [Online]. Available: http://arxiv.org/abs/2011.11995.
M. Langer, M. Harth, L. Preitschaft, R. Kates, and K. Bogenberger, "Calibration and Assessment of Urban Microscopic Traffic Simulation as an Environment for Testing of Automated Driving", in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA: IEEE, Sep. 2021, pp. 3210–3216. ISBN: 978-1-7281-9142-3. DOI: 10.1109/ITSC48978.2021.9564743. Accessed: Jan. 15, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/9564743/.
M. Harth, M. Langer, and K. Bogenberger, "Automated Calibration of Traffic Demand and Traffic Lights in SUMO Using Real-World Observations", en, SUMO Conference Proceedings, vol. 2, pp. 133–148, Jun. 2022, Publisher: TIB Open Publishing. ISSN: 2750-4425. DOI: 10.52825/scp.v2i.120. Accessed: Jan. 14, 2025. [Online]. Available: https://www.tib-op.org/ojs/index.php/scp/article/view/120.
L. Codeca, and J. Harri, "Towards multimodal mobility simulation of C-ITS: The Monaco SUMO traffic scenario", en, in 2017 IEEE Vehicular Networking Conference (VNC), Torino: IEEE, Nov. 2017, pp. 97–100. ISBN: 978-1-5386-0986-6. DOI: 10.1109/VNC.2017.8275627. Accessed: Jan. 14, 2025. [Online]. Available: http://ieeexplore.ieee.org/document/8275627/.
Y. Yamazaki, Y. Tamura, X. Défago, E. Javanmardi, and M. Tsukada, "ToST: Tokyo SUMO Traffic Scenario", en, in 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), Bilbao, Spain: IEEE, Sep. 2023, pp. 3597–3604. ISBN: 979-8-3503-9946-2. DOI: 10.1109/ITSC57777.2023.10422517. Accessed: Jan. 15, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/10422517/.
C. Stang, and K. Bogenberger, "Calibration of Microscopic Traffic Simulation in an Urban Environment Using GPS-Data", en, SUMO Conference Proceedings, vol. 5, pp. 71–78, Jul. 2024. ISSN: 2750-4425. DOI: 10.52825/scp.v5i.1099. Accessed: Jan. 15, 2025. [Online]. Available: https://www.tib-op.org/ojs/index.php/scp/article/view/1099.
S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk, "On map-matching vehicle tracking data", in Proceedings of the 31st International Conference on Very Large Data Bases, ser. VLDB '05, Trondheim, Norway: VLDB Endowment, 2005, pp. 853–864. ISBN: 1595931546.
L. Rabiner, and B. Juang, "An introduction to hidden Markov models", en, IEEE ASSP Magazine, vol. 3, no. 1, pp. 4–16, 1986. ISSN: 0740-7467. DOI: 10.1109/MASSP.1986.1165342. Accessed: Jan. 21, 2025. [Online]. Available: http://ieeexplore.ieee.org/document/1165342/.
P. Newson, and J. Krumm, "Hidden Markov map matching through noise and sparseness", en, in Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle Washington: ACM, Nov. 2009, pp. 336–343. ISBN: 978-1-60558-649-6. DOI: 10.1145/1653771.1653818. Accessed: Jan. 21, 2025. [Online]. Available: https://dl.acm.org/doi/10.1145/1653771.1653818.
W. Meert, and M. Verbeke, "HMM with non-emitting states for Map Matching", en, in European Conference on Data Analysis 2018, Paderborn, Germany, 2018.
S. Alarie, C. Audet, A. E. Gheribi, M. Kokkolaras, and S. Le Digabel, "Two decades of blackbox optimization applications", en, EURO Journal on Computational Optimization, vol. 9, p. 100011, 2021. ISSN: 21924406. DOI: 10.1016/j.ejco.2021.100011. Accessed: Jan. 22, 2025. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2192440621001386.
J. Larson, M. Menickelly, and S. M. Wild, "Derivative-free optimization methods", en, Acta Numerica, vol. 28, pp. 287–404, May 2019. ISSN: 0962-4929, 1474-0508. DOI: 10.1017/S0962492919000060. Accessed: Jan. 20, 2025. [Online]. Available: https://www.cambridge.org/core/product/identifier/S0962492919000060/type/journal_article.
N. Hansen, and A. Ostermeier, "Completely Derandomized Self-Adaptation in Evolution Strategies", en, Evolutionary Computation, vol. 9, no. 2, pp. 159–195, Jun. 2001. ISSN: 1063-6560, 1530-9304. DOI: 10.1162/106365601750190398. Accessed: Jan. 17, 2025. [Online]. Available: https://direct.mit.edu/evco/article/9/2/159-195/892.
G. Shala, A. Biedenkapp, N. Awad, S. Adriaensen, M. Lindauer, and F. Hutter, "Learning Step-Size Adaptation in CMA-ES", en, in Parallel Problem Solving from Nature – PPSN XVI, T. Bäck, M. Preuss, A. Deutz et al., Eds., vol. 12269, Cham: Springer International Publishing, 2020, pp. 691–706, ser. Lecture Notes in Computer Science. ISBN: 978-3-030-58111-4 978-3-030-58112-1. DOI: 10.1007/978-3-030-58112-1_48. Accessed: Jan. 22, 2025. [Online]. Available: http://link.springer.com/10.1007/978-3-030-58112-1_48.
K. Nagel, M. Zilske, and G. Flötteröd, "CaDyTS: Calibration of Dynamic Traffic Simulations", Technische Universität Berlin, 2016. DOI: 10.14279/DEPOSITONCE-7753. Accessed: Mar. 26, 2025. [Online]. Available: https://depositonce.tu-berlin.de//handle/11303/8619.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Jakob Kappenberger, Heiner Stuckenschmidt

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Accepted 2025-04-25
Published 2025-07-15
Funding data
-
Deutsche Forschungsgemeinschaft
Grant numbers INST 35/1597-1 FUGG