Effects of Charging Strategies and Policies on Electric Vehicles and Infrastructure From a Microscopic Perspective

Authors

DOI:

https://doi.org/10.52825/scp.v6i.2622

Keywords:

Electric Vehicle, Charging Stations, Traffic Simulation

Abstract

The growing number of battery electric vehicles (BEV) implies changes in urban infrastructure. Large amounts of charging stations are to be built within few years to supply energy for a mostly electric vehicle fleet. In parallel the power grid has to be adpated to the growing energy demand. However charging behaviour depends on mobility patterns and which type of charging stations can be accessed. For example, charging at work is mostly restricted to employees and happens during working hours. Public charging stations cater any BEV user but take precious public space. In this work several charging station configurations for a city are studied on a microscopic level together with different BEV shares and charging strategies and policies. 24 hour working day SUMO microsopic traffic demand travels along trip chains and charges their electric vehicle battery when needed. Parking and charging infrastructure is limited to reasonable capacity for a medium sized German city. Then the configurations are evaluated with respect to charging station usage and the expected energy demand/supply of BEV for balanced and time-shift charging strategies as well as vehicle-to-home/vehicle-to-grid policies. Applying these strategies and policies on a large scale can lower the energy peak demand visibly.

Downloads

Download data is not yet available.

References

European Union, Regulation (EU) 2023/851 of the European Parliament and of the Council of 19 April 2023 amending Regulation (EU) 2019/631 as regards strengthening the CO2 emission performance standards for new passenger cars and new light commercial vehicles in line with the Union’s increased climate ambition, European Union, Standard 2023/851, Apr. 2023. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32023R0851.

J. Figgener, "Data-driven battery aging analysis of home storage systems based on high-resolution field measurements", Ph.D. dissertation, RWTH Aachen, 2024. DOI: 10.18154/RWTH-2024-10709. [Online]. Available: https://publications.rwth-aachen.de/record/996641/files/996641.pdf.

A. Windt, and O. Arnhold, "Ladeinfrastruktur nach 2025/2030: Szenarien für den Markthochlauf Studie im Auftrag des BMVI", Nationale Leitstelle Ladeinfrastruktur, 2020. [Online]. Available: https://edocs.tib.eu/files/e01fn21/1746343591.pdf.

M. Hardinghaus, C. Seidel, and J. E. Anderson, "Estimating Public Charging Demand of Electric Vehicles", Sustainability, vol. 11, no. 21, p. 5925, Oct. 2019. ISSN: 2071-1050. DOI: 10.3390/su11215925.

European Union, "Directive (EU) 2024/1275 of the European Parliament and of the Council 24 April 2024 on the energy performance of buildings (recast)", Official Journal of the European Union, vol. ABl. L, May 2024. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202401275.

Bundesministerium der Justiz, Gesetz zum Aufbau einer gebäudeintegrierten Lade- und Leitungsinfrastruktur für die Elektromobilität, Bundesministerium der Justiz, 2024. [Online]. Available: https://www.gesetze-im-internet.de/geig/.

S. Hardman, A. Jenn, G. Tal et al., "A review of consumer preferences of and interactions with electric vehicle charging infrastructure", Transportation Research Part D: Transport and Environment, vol. 62, pp. 508-523, Jul. 2018. ISSN: 1361-9209. DOI: https://doi.org/10.1016/j.trd.2018.04.002. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1361920918301330.

C. Nobis, and T. Kuhnimhof, "Mobilität in Deutschland – MiD Ergebnisbericht", Bundesministerium für Verkehr und digitale Infrastruktur, resreport, 2018. [Online]. Available: https://www.mobilitaet-in-deutschland.de/archive/pdf/MiD2017_Ergebnisbericht.pdf.

A. Maertz, U. Langenmayr, S. Ried, K. Seddig, and P. Jochem, "Charging Behavior of Electric Vehicles: Temporal Clustering Based on Real-World Data", Energies, vol. 15, no. 18, p. 6575, Sep. 2022. ISSN: 1996-1073. DOI: 10.3390/en15186575.

M. Kchaou-Boujelben, "Charging station location problem: A comprehensive review on models and solution approaches", Transportation Research Part C: Emerging Technologies, vol. 132, p. 103376, Nov. 2021. ISSN: 0968-090X. DOI: 10.1016/j.trc.2021.103376.

O. Frendo, N. Gaertner, and H. Stuckenschmidt, "Real-Time Smart Charging Based on Precomputed Schedules", IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6921–6932, Nov. 2019. ISSN: 1949-3061. DOI: 10.1109/tsg.2019.2914274.

F. Paganini, and A. Ferragut, "Dynamics and Optimization in Spatially Distributed Electrical Vehicle Charging", IEEE Transactions on Control of Network Systems, vol. 12, no. 1, pp. 403–415, Mar. 2025. ISSN: 2372-2533. DOI: 10.1109/tcns.2024.3487650.

A. Heider, K. Helfenbein, B. Schachler, T. Ropcke, and G. Hug, "On the Integration of Electric Vehicles into German Distribution Grids through Smart Charging", in 2022 International Conference on Smart Energy Systems and Technologies (SEST), IEEE, Sep. 2022. DOI: 10.1109/sest53650.2022.9898464.

J. Gemassmer, C. Daam, and R. Reibsch, "Challenges in Grid Integration of Electric Vehicles in Urban and Rural Areas", World Electric Vehicle Journal, vol. 12, no. 4, p. 206, Oct. 2021. ISSN: 2032-6653. DOI: 10.3390/wevj12040206.

M. Müller, Y. Blume, and J. Reinhard, "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load", Energy, vol. 255, p. 124537, 2022. ISSN: 0360-5442. DOI: https://doi.org/10.1016/j.energy.2022.124537. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360544222014402.

P. Gauglitz, J. Ulffers, G. Thomsen, F. Frischmuth, D. Geiger, and A. Scheidler, "Modeling Spatial Charging Demands Related to Electric Vehicles for Power Grid Planning Applications", ISPRS International Journal of Geo-Information, vol. 9, no. 12, p. 699, Nov. 2020. DOI: 10.3390/ijgi9120699.

J. Widmann, M. Weist, and O. Sawodny, "A Transport Simulation-Based Analysis of Charging Station Occupation for Long-Distance Route Planning of Battery Electric Vehicles", in 2023 IEEE/SICE International Symposium on System Integration (SII), IEEE, Jan. 2023, pp. 1–6. DOI: 10.1109/sii55687.2023.10039170.

M. Gharbaoui, L. Valcarenghi, B. Martini, P. Castoldi, R. Bruno, and M. Conti, "Effective management of a public charging infrastructure through a smart management system for electric vehicles", in 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), IEEE, Sep. 2012. DOI: 10.1109/energycon.2012.6347733.

P. A. Lopez, M. Behrisch, L. Bieker-Walz et al., "Microscopic Traffic Simulation using SUMO", in The 21st IEEE International Conference on Intelligent Transportation Systems, IEEE, 2018. [Online]. Available: https://elib.dlr.de/124092/.

T. Kurczveil, and E. Schnieder, "Implementation of an Energy Model and a Charging Infrastructure in SUMO", in 1st SUMO User Conference 2013, ser. Berichte aud dem DLR-Institut für Verkehrssystemtechnik, vol. 21, Deutsche Zentrum für Luft- und Raumfahrt, 2014. [Online]. Available: https://elib.dlr.de/93885/.

O. Frendo, S. Karnouskos, N. Gaertner, O. Kipouridis, K. Rehman, and N. Verzano, "Charging Strategies and Implications for Corporate Electric Vehicle Fleets", in 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), IEEE, Jul. 2018. DOI: 10.1109/indin.2018.8472104.

S. Schoenberg, D. S. Buse, and F. Dressler, "Coordinated Electric Vehicle Re-Charging to Reduce Impact on Daily Driving Schedule", in 2021 IEEE Intelligent Vehicles Symposium (IV), IEEE, Jul. 2021, pp. 1180–1187. DOI: 10.1109/iv48863.2021.9575517.

S. Klingert, and J. Lee, "Using real mobility patterns to assess the impact of 100% electrified mobility in a German city", Energy Informatics, vol. 5, no. 1, p. 32, Oct. 2022. ISSN: 2520-8942. DOI: 10.1186/s42162-022-00248-x. [Online]. Available: https://doi.org/10.1186/s42162-022-00248-x.

W. A. Ali, M. A. del Cacho Estilles, A. M. Mangini, M. Roccotelli, and M. P. Fanti, "Electric Vehicles Routing Simulation and Optimization under Smart Charging Strategies", in Proceedings of the 35th European Modeling & Simulation Symposium, EMSS, ser. EMSS 2023, CAL-TEK srl, 2023. DOI: 10.46354/i3m.2023.emss.021.

E. Spachtholz, M. Glomsda, I. Kranefeld, F. E. Kracht, and D. Schramm, "Charging Stations for Electric Vehicles in SUMO Simulation Environment and Their Impact on the Traffic Flow", in 16th International Symposium on Advanced Vehicle Control, G. Mastinu, F. Braghin, F. Cheli, M. Corno, and S. M. Savaresi, Eds., Springer Nature Switzerland, 2024, pp. 301–307. ISBN: 978-3-031-70392-8. DOI: 10.1007/978-3-031-70392-8_43.

Deutsches Zentrum für Luft- und Raumfahrt, "Sumo Scenarios", 2025. [Online]. Available: https://github.com/DLR-TS/sumo-scenarios.

OpenStreetMap contributors, "OpenStreetMap maps", 2022. [Online]. Available: https://www.openstreetmap.org.

L. Pinkofsky, "Typisierung von Ganglinien der Verkehrsstärke und ihre Eignung zur Modellierung der Verkehrsnachfrage", Ph.D. dissertation, Technische Universität Braunschweig, Jun. 2005. DOI: 10.24355/dbbs.084-200605170200-13. [Online]. Available: https://leopard.tu-braunschweig.de/receive/dbbs_mods_00000047.

P. Alvarez Lopez, A. Banse, M. Barthauer et al., "Simulation of Urban Mobility (SUMO)", version 1.22.0, Feb. 2025. DOI: 10.5281/zenodo.14796685. [Online]. Available: https://doi.org/10.5281/zenodo.14796685.

Downloads

Published

2025-07-15

How to Cite

Barthauer, M. (2025). Effects of Charging Strategies and Policies on Electric Vehicles and Infrastructure From a Microscopic Perspective. SUMO Conference Proceedings, 6, 51–63. https://doi.org/10.52825/scp.v6i.2622

Conference Proceedings Volume

Section

Conference papers
Received 2025-02-23
Accepted 2025-04-25
Published 2025-07-15