Spatio-Temporal AI Modeling for Urban Traffic Calibration: A SUMO-Based Approach
DOI:
https://doi.org/10.52825/scp.v6i.2628Keywords:
Traffic Calibration, Urban Mobility, Transport Policies, DSTGAT, SUMOAbstract
Urban traffic management is a critical challenge in modern cities, necessitating innovative solutions to optimize traffic flow and reduce congestion. This research presents the development of an AI engine leveraging spatio-temporal learning techniques for urban traffic calibration. The proposed methodology leverages digital twin scenarios driven by microscopic simulations, which capture detailed vehicle behaviors—including interactions, lane changes, and driver dynamics to provide granular insights into urban traffic patterns. At the core of the AI engine is the Dynamic Spatio-Temporal Graph Attention Network (DSTGAT), a hybrid model that combines multi-head Graph Attention Networks (GATv2) with Long Short-Term Memory (LSTM) networks. DSTGAT exploits the joint spatio-temporal relationships inherent in traffic data by processing sequential snapshots of urban traffic, where each snapshot is represented as a graph with nodes indicating urban zones and edges carrying continuous flow values. The GATv2 layers, enhanced with residual connections and batch normalization, extract robust spatial embeddings, while the LSTM aggregates these embeddings over time to capture dynamic patterns and predict future traffic flows in real-time. The AI engine incorporates an iterative feedback loop that continuously refines the OD demand using synthetic scenarios, improving estimation accuracy across diverse urban environments. Preliminary results show that the DSTGAT‑based framework lowers OD‑estimation error on simulated data, suggesting its usefulness as an input to downstream traffic‑management strategies.
Downloads
References
E. Cascetta, and S. Nguyen, "A Unified Framework for Estimating or Updating Origin/Destination Matrices from Traffic Counts", Transportation Research Part B: Methodological, vol. 22, no. 6, pp. 437–455, Dec. 1988. ISSN: 0191-2615. DOI: 10.1016/0191-2615(88)90024-0.
E. Cascetta, D. Inaudi, and G. Marquis, "Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts", Transportation Science, vol. 27, no. 4, pp. 363–373, Nov. 1993. ISSN: 0041-1655. Accessed: Feb. 26, 2025. DOI: 10.1287/trsc.27.4.363.
H. Yang, T. Sasaki, Y. Iida, and Y. Asakura, "Estimation of Origin-Destination Matrices from Link Traffic Counts on Congested Networks", Transportation Research Part B: Methodological, vol. 26, no. 6, pp. 417–434, Dec. 1992. ISSN: 0191-2615. DOI: 10.1016/0191-2615(92)90008-K.
B. Williams, and L. Hoel, "Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results", Journal of Transportation Engineering, vol. 129, no. 6, pp. 664–672, 2003. DOI: 10.1061/(ASCE)0733-947X(2003)129:6(664).
J. Spall, "Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation", IEEE Transactions on Automatic Control, vol. 37, no. 3, pp. 332–341, 1992. DOI: 10.1109/9.119632.
R. Balakrishna, "Off-Line Calibration of Dynamic Traffic Assignment Models /", Jan. 2008.
V. Vaze, C. Antoniou, Y. Wen, and M. Ben-Akiva, "Calibration of Dynamic Traffic Assignment Models with Point-to-Point Traffic Surveillance", Transportation Research Record, vol. 2090, no. 1, pp. 1–9, 2009.
E. Cipriani, M. Florian, M. Mahut, and M. Nigro, "A Gradient Approximation Approach for Adjusting Temporal Origin–Destination Matrices", Transportation Research Part C: Emerging Technologies, Emerging Theories in Traffic and Transportation and Methods for Transportation Planning and Operations, vol. 19, no. 2, pp. 270–282, Apr. 2011. ISSN: 0968-090X. Accessed: Feb. 26, 2025. DOI: 10.1016/j.trc.2010.05.013.
H. Kim, S. Baek, and Y. Lim, "Origin-Destination Matrices Estimated with a Genetic Algorithm from Link Traffic Counts", Transportation Research Record, vol. 1771, no. 1, pp. 156–163, Jan. 2001. ISSN: 0361-1981. Accessed: Feb. 26, 2025. DOI: 10.3141/1771-20.
A. Stathopoulos, and T. Tsekeris, "Hybrid Meta-heuristic Algorithm for the Simultaneous Optimization of the o–d Trip Matrix Estimation", Computer-Aided Civil and Infrastructure Engineering, vol. 19, 2004.
L. Kattan, and B. Abdulhai, "Noniterative Approach to Dynamic Traffic Origin–Destination Estimation with Parallel Evolutionary Algorithms", Transportation Research Record, vol. 1964, no. 1, pp. 201–210, Jan. 2006. ISSN: 0361-1981. Accessed: Feb. 26, 2025. DOI: 10.1177/0361198106196400122.
W. Huyer, and A. Neumaier, "SNOBFIT – Stable Noisy Optimization by Branch and Fit", ACM Trans. Math. Softw., vol. 35, no. 2, Jul. 2008. ISSN: 0098-3500. DOI: 10.1145/1377612.1377613.
Q. Ge, and M. Menendez, "An Efficient Sensitivity Analysis Approach for Computationally Expensive Microscopic Traffic Simulation Models", International Journal of Transportation, vol. 2, no. 2, pp. 49–64, Aug. 2014. ISSN: 22877940, 22877940. Accessed: Feb. 26, 2025. DOI: 10.14257/ijt.2014.2.2.04.
B. Ciuffo, and C. Lima Azevedo, "A Sensitivity-Analysis-Based Approach for the Calibration of Traffic Simulation Models", IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 3, pp. 1298–1309, 2014. DOI: 10.1109/TITS.2014.2302674.
T. Djukic, J. Barceló Bugeda, M. Bullejos et al., "Advanced Traffic Data for Dynamic OD Demand Estimation: The State of the Art and Benchmark Study", in TRB 94th Annual Meeting Compendium of Papers, 2015, pp. 1–16.
A. A. Prakash, R. Seshadri, C. Antoniou, F. C. Pereira, and M. E. Ben-Akiva, "Reducing the Dimension of Online Calibration in Dynamic Traffic Assignment Systems", Transportation Research Record, vol. 2667, no. 1, pp. 96–107, Jan. 2017. ISSN: 0361-1981. Accessed: Feb. 26, 2025. DOI: 10.3141/2667-10.
G. Flötteröd, M. Bierlaire, and K. Nagel, "Bayesian Demand Calibration for Dynamic Traffic Simulations", Transportation Science, vol. 45, no. 4, pp. 541–561, 2011.
P. Lin, and G. Chang, "A Generalized Model and Solution Algorithm for Estimation of the Dynamic Freeway Origin–Destination Matrix", Transportation Research Part B: Methodological, vol. 41, no. 5, pp. 554–572, 2007.
S. Sun, C. Zhang, and G. Yu, "A Bayesian Network Approach to Traffic Flow Forecasting", IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 1, pp. 124–132, 2006. DOI: 10.1109/TITS.2006.869623.
Y. Qi, and S. Ishak, "A Hidden Markov Model for Short Term Prediction of Traffic Conditions on Freeways", Special Issue on Short-term Traffic Flow Forecasting, vol. 43, pp. 95–111, Jun. 2014. ISSN: 0968-090X. DOI: 10.1016/j.trc.2014.02.007.
W. Zhang, Y. Yu, Y. Qi, F. Shu, and Y. Wang, "Short-Term Traffic Flow Prediction Based on Spatio-Temporal Analysis and CNN Deep Learning", Transportmetrica A Transport Science, vol. 15, no. 2, pp. 1688–1711, Jan. 2019. ISSN: 2324-9935. DOI: 10.1080/23249935.2019.1637966.
A. Kumar, D. Garg, and G. Sharma, "Three-Tier Survey of Deep Learning Based Traffic Prediction Schemes", in 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Mar. 2024, pp. 1–6. ISSN: 2769-2884. Accessed: Feb. 19, 2025. DOI: 10.1109/ICRITO61523.2024.10522180.
B. Yu, H. Yin, and Z. Zhu, "Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting", in Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Jul. 2018, pp. 3634–3640. Accessed: Feb. 26, 2025. DOI: 10.24963/ijcai.2018/505.
J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, Spectral Networks and Locally Connected Networks on Graphs, May 2014. Accessed: Feb. 26, 2025. DOI: 10.48550/arXiv.1312.6203, arXiv: 1312.6203 [cs].
S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, "Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting", Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 922–929, Jul. 2019. ISSN: 2374-3468. Accessed: Feb. 26, 2025. DOI: 10.1609/aaai.v33i01.3301922.
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, Graph Attention Networks, Feb. 2018. Accessed: Feb. 26, 2025. DOI: 10.48550/arXiv.1710.10903, arXiv: 1710.10903 [stat].
Y. Liang, S. Ke, J. Zhang, X. Yi, and Y. Zheng, "GeoMAN: Multi-level Attention Networks for Geo-sensory Time Series Prediction", pp. 3428–3434, 2018.
J. Ye, S. Xue, and A. Jiang, "Attention-Based Spatio-Temporal Graph Convolutional Network Considering External Factors for Multi-Step Traffic Flow Prediction", Digital Communications and Networks, vol. 8, no. 3, pp. 343–350, Jun. 2022. ISSN: 2352-8648. Accessed: Feb. 19, 2025. DOI: 10.1016/j.dcan.2021.09.007.
Y. Chen, L. Zheng, and W. Liu, "Spatio-Temporal Attention-based Graph Convolution Networks for Traffic Prediction", in 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Oct. 2022, pp. 642–649. ISSN: 2577-1655. Accessed: Feb. 19, 2025. DOI: 10.1109/SMC53654.2022.9945522.
D. Guan, N. Ren, K. Wang, Q. Wang, and H. Zhang, "Checkpoint Data-Driven GCN-GRU Vehicle Trajectory and Traffic Flow Prediction", Scientific Reports, vol. 14, no. 1, p. 30409, Dec. 2024. ISSN: 2045-2322. Accessed: Feb. 19, 2025. DOI: 10.1038/s41598-024-80563-3.
Y. Chen, J. Huang, H. Xu, J. Guo, and L. Su, "Road Traffic Flow Prediction Based on Dynamic Spatiotemporal Graph Attention Network", Scientific Reports, vol. 13, no. 1, p. 14729, Sep. 2023. ISSN: 2045-2322. Accessed: Feb. 19, 2025. DOI: 10.1038/s41598-023-41932-6.
"Conjunto de Datos OTLE: Parque nacional de vehículos por comunidad autónoma, provincia, tipo de vehículo y tipo de carburante". Accessed: Feb. 26, 2025. [Online]. Available: https://apps.fomento.gob.es/BDOTLE/visorBDpop.aspx?i=396.
A. Paricio, M. López-Carmona, and P. Manglano-Redondo, "Optimized Design of Low Emission Zones in SUMO: A Dual Focus on Emissions Reduction and Travel Time Improvement", SUMO Conference Proceedings, vol. 5, pp. 247–268, Jul. 2024. DOI: 10.52825/scp.v5i.1143.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Pablo Manglano-Redondo, Alvaro Paricio-Garcia, Miguel A. Lopez-Carmona

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Accepted 2025-04-25
Published 2025-07-15