Extending the Intelligent Driver Model in SUMO and Verifying the Drive Off Trajectories with Aerial Measurements

Authors

  • Dominik Salles Research Institute of Automotive Engineering and Vehicle Engines Stuttgart image/svg+xml
  • Stefan Kaufmann IT-Designers GmbH
  • Hans-Christian Reuss University of Stuttgart - Institute of Automotive Engineering (IFS) image/svg+xml

DOI:

https://doi.org/10.52825/scp.v1i.95

Keywords:

Intelligent Driver Model, Simulation of Urban Mobility, car following model, human driving behavior, drive off of queued vehicles, drone data, Aerial measurement, realistic vehicle trajectories, human driver model, driving off

Abstract

Connected and automated driving functions are key components for future vehicles. Due to implementation issues and missing infrastructure, the impact of connected and automated vehicles on the traffic flow can only be evaluated in accurate simulations. Simulation of Urban Mobility (SUMO) provides necessary and appropriate models and tools. SUMO contains many car-following models that replicate automated driving, but cannot realistically imitate human driving behavior. When simulating queued vehicles driving off, existing car-following models are neither able to correctly emulate the acceleration behavior of human drivers nor the resulting vehicle gaps. Thus, we propose a time-discrete 2D Human Driver Model to replicate realistic trajectories. We start by combining previously published extensions of the Intelligent Driver Model (IDM) to one generalized model. Discontinuities due to introduced reaction times, estimation errors and lane changes are conquered with new approaches and equations. Above all, the start-up procedure receives more attention than in existing papers. We also provide a first evaluation of the advanced car-following model using 30 minutes of an aerial measurement. This dataset contains three hours of drone recordings from two signalized intersections in Stuttgart, Germany. The method designed for extracting the vehicle trajectories from the raw video data is outlined. Furthermore, we evaluate the accuracy of the trajectories obtained by the aerial measurement using a specially equipped vehicle.

References

Alazzawi, Sabina; Hummel, Mathias; Kordt, Pascal; Sickenberger, Thorsten; Wieseotte, Christian; Wohak, Oliver (2018): Simulating the Impact of Shared, Autonomous Vehicles on Urban Mobility – a Case Study of Milan. In. SUMO 2018- Simulating Autonomous and Intermodal Transport Systems: EasyChair (EPiC Series in Engineering), 94-76.

Alekszejenkó, Levente; Dobrowiecki, Tadeusz P. (2019): SUMO Based Platform for Cooperative Intelligent Automotive Agents. In. SUMO User Conference 2019: EasyChair (EPiC Series in Computing), pp. 107–189.

Bando; Hasebe; Nakayama; Shibata; Sugiyama (1995): Dynamical model of traffic congestion and numerical simulation. In Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics 51 (2), pp. 1035–1042. DOI: 10.1103/PhysRevE.51.1035.

Biurrun-Quel, Carlos; Serrano-Arriezu, Luis; Olaverri-Monreal, Cristina (2017): Microscopic Driver-Centric Simulator: Linking Unity3D and SUMO. In Álvaro Rocha, Ana Maria Correia, Hojjat Adeli, Luís Paulo Reis, Sandra Costanzo (Eds.): Recent Advances in Information Systems and Technologies, vol. 569. Cham: Springer International Publishing (Advances in Intelligent Systems and Computing), pp. 851–860.

Bochinski, Erik; Eiselein, Volker; Sikora, Thomas (2017): High-Speed tracking-by-detection without using image information. In. 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Lecce, Italy, 2017: IEEE, pp. 1–6.

Bock, Julian; Krajewski, Robert; Moers, Tobias; Runde, Steffen; Vater, Lennart; Eckstein, Lutz (2019): The inD Dataset: A Drone Dataset of Naturalistic Road User Trajectories at German Intersections. Available online at http://arxiv.org/pdf/1911.07602v1.

Chen, Xiqun; Li, Ruimin; Xie, Weijun; Shi, Qixin (2009): Stabilization of traffic flow based on multi-anticipative intelligent driver model. In. 12th International IEEE Conference on Intelligent Transportation Systems (ITSC): IEEE, pp. 1–6.

Coifman, Benjamin; Li, Lizhe (2017): A critical evaluation of the Next Generation Simulation (NGSIM) vehicle trajectory dataset. In Transportation Research Part B: Methodological 105, pp. 362–377. DOI: 10.1016/j.trb.2017.09.018.

Dallmeyer, Jörg (2014): Simulation des Straßenverkehrs in der Großstadt. Das Mit- und Gegeneinander verschiedener Verkehrsteilnehmertypen. Teilw. zugl.: Frankfurt, Univ., Diss., 2013 u.d.T.: Akteursorientierte multimodale Straßenverkehrssimulation. Wiesbaden: Springer Vieweg (Research).

Derbel, Oussama; Mourllion, Benjamin; Basset, Michel (2012): Extended safety descriptor measurements for relative safety assessment in mixed road traffic. In. 15th International IEEE Conference on Intelligent Transportation Systems - (ITSC 2012): IEEE, pp. 752–757.

Dey, Partha; Nandal, S.; Kalyan, R. (2013): Queue discharge characteristics at signalised intersections under mixed traffic conditions. In European Transport - Trasporti Europei.

Donateo, Teresa; Pacella, Damiano; Laforgia, Domenico (2010): Simulation and Optimization of the Energy Management of ITAN500 in the SUMO Traffic Model Environment. In.

Ebel, André; Baumgartner, Edwin; Orner, Markus; Reuss, Hans-Christian (2017): Bewertung simulativ ausgelegter Antriebsstränge am Stuttgarter Fahrsimulator. In MTZ Extra 22 (S1), pp. 40–43. DOI: 10.1007/s41490-017-0004-9.

Ejercito, Paolo M.; Nebrija, Kristine Gayle E.; Feria, Rommel P.; Lara-Figueroa, Ligaya Leah (2017): Traffic simulation software review. In. 8th International Conference on Information, Intelligence, Systems & Applications (IISA): IEEE, pp. 1–4.

Erdağı, İsmet Gökşad; Silgu, Mehmet Ali; Çelikoğlu, Hilmi Berk (2019): Emission Effects of Cooperative Adaptive Cruise Control: A Simulation Case Using SUMO. In. SUMO User Conference 2019: EasyChair (EPiC Series in Computing), 92-82.

Erdmann, Jakob (2014): Lane-changing model in SUMO. In, vol. 24.

Fried, Oliver (2004): Betriebsstrategie für einen Minimalhybrid-Antriebsstrang. Aachen: Shaker (Berichte aus der Fahrzeugtechnik).

Gabb, Michael; Digel, Holger; Muller, Tobias; Henn, Rudiger-Walter (2019): Infrastructure-supported Perception and Track-level Fusion using Edge Computing. In. IEEE Intelligent Vehicles Symposium (IV). Paris, France, 2019: IEEE, pp. 1739–1745.

Gipps, P. G. (1981): A behavioural car-following model for computer simulation. In Transportation Research Part B: Methodological 15 (2), pp. 105–111. DOI: 10.1016/0191-2615(81)90037-0.

Grumert, Ellen; Ma, Xiaoliang; Tapani, Andreas (2015): Analysis of a cooperative variable speed limit system using microscopic traffic simulation. In Transportation Research Part C: Emerging Technologies 52, pp. 173–186. DOI: 10.1016/j.trc.2014.11.004.

He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian (2016): Deep Residual Learning for Image Recognition. In. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, pp. 770–778.

James A. Bonneson: Modeling Queued Driver Behavior at Signalized Junctions. In : Transportation Research Record, vol. 1365, pp. 99–107.

Jiang, R.; Wu, Q.; Zhu, Z. (2001): Full velocity difference model for a car-following theory. In Physical review. E, Statistical, nonlinear, and soft matter physics 64 (1 Pt 2), p. 17101. DOI: 10.1103/PhysRevE.64.017101.

Jin, Xuexiang; Zhang, Yi; Wang, Fa; Li, Li; Yao, Danya; Su, Yuelong; Wei, Zheng (2009): Departure headways at signalized intersections: A log-normal distribution model approach. In Transportation Research Part C: Emerging Technologies 17 (3), pp. 318–327. DOI: 10.1016/j.trc.2009.01.003.

Jumsan KIM; Zunhwan HWANG; Sungmo RHEE (2005): Vehicle Passing Behavior Through The Stop Line of Signalized Intersection. In Journal of the Eastern Asia Society for Transportation Studies 6, pp. 1509–1517. DOI: 10.11175/easts.6.1509.

Kaths, Jakob; Schott, Benedikt; Chucholowski, Frederic (2019): Co-simulation of the virtual vehicle in virtual traffic considering tactical driver decisions. In. SUMO User Conference 2019: EasyChair (EPiC Series in Computing), 21-12.

Kaufmann, Stefan; Kerner, Boris S.; Rehborn, Hubert; Koller, Micha; Klenov, Sergey L. (2018): Aerial observations of moving synchronized flow patterns in over-saturated city traffic. In Transportation Research Part C: Emerging Technologies 86, pp. 393–406. DOI: 10.1016/j.trc.2017.11.024.

Kesting, Arne; Treiber, Martin (2008): Calibrating Car-Following Models by Using Trajectory Data. In Transportation Research Record 2088 (1), pp. 148–156. DOI: 10.3141/2088-16.

Kesting, Arne; Treiber, Martin; Helbing, Dirk (2010): Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity. In Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 368 (1928), pp. 4585–4605. DOI: 10.1098/rsta.2010.0084.

Kotusevski, G.; Hawick, Ken (2009): A Review of Traffic Simulation Software. In Res. Lett. Inf. Math. Sci. 13.

Kovács, Tamás; Bolla, Kálmán; Gil, Rafael Alvarez; Csizmás, Edit; Fábián, Csaba; Kovács, Lóránt et al. (2016): Parameters of the intelligent driver model in signalized intersections. In Teh. vjesn. 23 (5). DOI: 10.17559/TV-20140702174255.

Kovvali, Vijay Gopal; Alexiadis, Vassili; Zhang P.E., Lin: Video-Based Vehicle Trajectory Data Collection. In : Transportation Research Board 86th Annual Meeting.

Krajewski, Robert; Bock, Julian; Kloeker, Laurent; Eckstein, Lutz (2018): The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems. In. 21st International Conference on Intelligent Transportation Systems (ITSC): IEEE, pp. 2118–2125.

Krauss, S.; Wagner, P.; Gawron, C. (1997): Metastable states in a microscopic model of traffic flow. In Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics 55 (5), pp. 5597–5602. DOI: 10.1103/PhysRevE.55.5597.

Le Vine, Scott; Liu, Xiaobo; Zheng, Fangfang; Polak, John (2016): Automated cars: Queue discharge at signalized intersections with ‘Assured-Clear-Distance-Ahead’ driving strategies. In Transportation Research Part C: Emerging Technologies 62, pp. 35–54. DOI: 10.1016/j.trc.2015.11.005.

Li, Li; Chen, Xiqun (2017): Vehicle headway modeling and its inferences in macroscopic/microscopic traffic flow theory: A survey. In Transportation Research Part C: Emerging Technologies 76, pp. 170–188. DOI: 10.1016/j.trc.2017.01.007.

Lopez, Pablo Alvarez; Wiessner, Evamarie; Behrisch, Michael; Bieker-Walz, Laura; Erdmann, Jakob; Flotterod, Yun-Pang et al. (2018): Microscopic Traffic Simulation using SUMO. In. 21st International Conference on Intelligent Transportation Systems (ITSC): IEEE, pp. 2575–2582.

Macedo, Jose; Kokkinogenis, Zafeiris; Soares, Guilherme; Perrotta, Deborah; Rossetti, Rosaldo J. F. (2013): A HLA-based multi-resolution approach to simulating electric vehicles in simulink and SUMO. In. 16th International IEEE Conference on Intelligent Transportation Systems - (ITSC 2013): IEEE, pp. 2367–2372.

Milanés, Vicente; Shladover, Steven E. (2014): Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data. In Transportation Research Part C: Emerging Technologies 48, pp. 285–300. DOI: 10.1016/j.trc.2014.09.001.

Nagel, Kai; Schreckenberg, Michael (1992): A cellular automaton model for freeway traffic. In J. Phys. I France 2 (12), pp. 2221–2229. DOI: 10.1051/jp1:1992277.

Pfeil, Raphael (2019): Methodischer Ansatz zur Optimierung von Energieladestrategien für elektrisch angetriebene Fahrzeuge (Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart). Available online at https://doi.org/10.1007/978-3-658-25863-4.

Queck, Tobias; Schüenemann, Bjöern; Radusch, Ilja (2008): Runtime infrastructure for simulating vehicle-2-x communication scenarios. In Varsha Sadekar, Paolo Santi, Yih-Chun Hu, Martin Mauve (Eds.): Proceedings of the fifth ACM international workshop on VehiculAr Inter-NETworking - VANET '08. the fifth ACM international workshop. San Francisco, California, USA, 15.09.2008 - 15.09.2008. New York, New York, USA: ACM Press, p. 78.

Ren, Shaoqing; He, Kaiming; Girshick, Ross; Sun, Jian (2015): Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Available online at http://arxiv.org/pdf/1506.01497v3.

Richter, Gerald; Grohmann, Lukas; Nitsche, Philippe; Lenz, Gernot (2019): Anticipating Automated Vehicle Presence and the Effects on Interactions with Conventional Traffic and Infrastructure. In. SUMO User Conference 2019: EasyChair (EPiC Series in Computing), 230-215.

Riegl, Peter; Gaull, Andreas; Beitelschmidt, Michael (2019): A tool chain for generating critical traffic situations for testing vehicle safety functions. In. IEEE International Conference on Vehicular Electronics and Safety (ICVES): IEEE, pp. 1–6.

Rumbolz, Philip; Piegssa, Anne; Reuss, Hans-Christian (2010): Messung der Fahrzeug-internen Leistungsflüsse und der diese beeinflussenden Größen im 'real-life' Fahrbetrieb. In VDI-Berichte 2105, pp. 175–188.

Saifuzzaman, Mohammad; Zheng, Zuduo (2014): Incorporating human-factors in car-following models: A review of recent developments and research needs. In Transportation Research Part C: Emerging Technologies 48, pp. 379–403. DOI: 10.1016/j.trc.2014.09.008.

Schulz, Ralph (2013): Blickverhalten und Orientierung von Kraftfahrern auf Landstraßen. 1. Aufl. Dresden: TU, Lehrstuhl Gestaltung von Straßenverkehrsanlagen (Schriftenreihe des Lehrstuhls Gestaltung von Straßenverkehrsanlagen, H. 10).

Sommer, Christoph; Yao, Zheng; German, Reinhard; Dressler, Falko (2008): On the need for bidirectional coupling of road traffic microsimulation and network simulation. In Minkyong Kim,

Cecilia Mascolo, Mirco Musolesi (Eds.): Proceeding of the 1st ACM SIGMOBILE workshop on Mobility models - MobilityModels '08. Proceeding of the 1st ACM SIGMOBILE workshop. Hong Kong, Hong Kong, China, 26.05.2008 - 26.05.2008. New York, New York, USA: ACM Press, p. 41.

Thiemann, Christian; Treiber, Martin; Kesting, Arne (2008): Estimating Acceleration and Lane-Changing Dynamics from Next Generation Simulation Trajectory Data. In Transportation Research Record 2088 (1), pp. 90–101. DOI: 10.3141/2088-10.

Treiber; Hennecke; Helbing (2000): Congested traffic states in empirical observations and microscopic simulations. In Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics 62 (2 Pt A), pp. 1805–1824. DOI: 10.1103/PhysRevE.62.1805.

Treiber, Martin; Helbing, Dirk (2004): Visualisierung der fahrzeugbezogenen und verkehrlichen Dynamik mit und ohne Beeinflussungs-Systemen. In, pp. 323–334.

Treiber, Martin; Kanagaraj, Venkatesan (2015): Comparing numerical integration schemes for time-continuous car-following models. In Physica A: Statistical Mechanics and its Applications 419, pp. 183–195. DOI: 10.1016/j.physa.2014.09.061.

Treiber, Martin; Kesting, Arne (2013a): Microscopic Calibration and Validation of Car-Following Models – A Systematic Approach. In Procedia - Social and Behavioral Sciences 80, pp. 922–939. DOI: 10.1016/j.sbspro.2013.05.050.

Treiber, Martin; Kesting, Arne (2013b): Traffic flow dynamics. Data, models and simulation. Heidelberg, New York: Springer.

Treiber, Martin; Kesting, Arne (2017): The Intelligent Driver Model with Stochasticity -New Insights Into Traffic Flow Oscillations. In Transportation Research Procedia 23, pp. 174–187. DOI: 10.1016/j.trpro.2017.05.011.

Treiber, Martin; Kesting, Arne; Helbing, Dirk (2006): Delays, inaccuracies and anticipation in microscopic traffic models. In Physica A: Statistical Mechanics and its Applications 360 (1), pp. 71–88. DOI: 10.1016/j.physa.2005.05.001.

Wagner, C.; Salfeld, M.; Knoll, S.; Reuss, H.-C. (2010): Quantifizierung des Einflusses von ACC auf die CO2-Emissionen im kundenrelevanten Fahrbetrieb. In Proceedings Stuttgart International Symposium, Nr. 10.

Wagner, Peter; Lubashevsky, Ihor (2003): Empirical basis for car-following theory development.

Wegener, Axel; Piórkowski, Michał; Raya, Maxim; Hellbrück, Horst; Fischer, Stefan; Hubaux, Jean-Pierre (2008): TraCI: an interface for coupling road traffic and network simulators. In Aftab Ahmad, Arnold Bragg (Eds.): Proceedings of the 11th communications and networking simulation symposium on - CNS '08. the 11th communications and networking simulation symposium. Ottawa, Canada, 14.04.2008 - 17.04.2008. New York, New York, USA: ACM Press, p. 155.

Wiedemann, Rainer (1974): Simulation des Straßenverkehrsflusses. Hochschulschrift, Karlsruhe.

Xiao, Lin; Wang, Meng; Schakel, Wouter; van Arem, Bart (2018): Unravelling effects of cooperative adaptive cruise control deactivation on traffic flow characteristics at merging bottlenecks. In Transportation Research Part C: Emerging Technologies 96, pp. 380–397. DOI: 10.1016/j.trc.2018.10.008.

Xiao, Lin; Wang, Meng; van Arem, Bart (2017): Realistic Car-Following Models for Microscopic Simulation of Adaptive and Cooperative Adaptive Cruise Control Vehicles. In Transportation Research Record 2623 (1), pp. 1–9. DOI: 10.3141/2623-01.

Zhou, Mofan; Qu, Xiaobo; Jin, Sheng (2016): On the Impact of Cooperative Autonomous Vehicles in Improving Freeway Merging: A Modified Intelligent Driver Model-Based Approach. In IEEE Trans. Intell. Transport. Syst., pp. 1–7. DOI: 10.1109/TITS.2016.2606492.

Downloads

Published

2022-07-01

How to Cite

Salles, D., Kaufmann, S., & Reuss, H.-C. (2022). Extending the Intelligent Driver Model in SUMO and Verifying the Drive Off Trajectories with Aerial Measurements. SUMO Conference Proceedings, 1, 1–25. https://doi.org/10.52825/scp.v1i.95

Issue

Section

Conference papers