Estimation of Green House Gas and Contaminant Emissions from Traffic by microsimulation and refined Origin-Destination matrices: a methodological approach


  • Jorge Eloy Luzuriaga Quichimbo Universitat Politècnica de València image/svg+xml
  • Juan-Antonio Moreno-Perez Universitat Politècnica de València image/svg+xml
  • Edgar Lorenzo-Sáez Universitat Politècnica de València image/svg+xml
  • Santiago Mira Prats Universitat Politècnica de València image/svg+xml
  • Javier Fermín Urchueguía Schölzel Universitat Politècnica de València image/svg+xml
  • Lenin Guillermo Lemus Zúñiga Universitat Politècnica de València image/svg+xml
  • José Vicente Oliver Villanueva Universitat Politècnica de València image/svg+xml
  • Miguel Ángel Mateo Pla Universitat Politècnica de València image/svg+xml



mobility, demand modelling, OD matrices, CO2 emissions, SUMO, Lagrangian algorithm


The high levels of air contamination and presence of different pollutants are a large problem in most of the cities in which road transport is the primary source of emissions.
The governments of more than 100 countries are adopting different policies and strategies to help reduce and mitigate their global emissions. In terms of road transport, reductions in emissions could be achieved by replacing conventional vehicle technologies or by changing the travel patterns of individuals using a private vehicle as their primary means of transportation. However, accurately quantifying the emissions related to the urban traffic from multiple possible scenarios is a very complicated task, even when appropriate tools made for this purpose are available. Here we apply a scientifically rigorous protocol to accurately estimate greenhouse and other polluting gases.
We describe the methodological steps we followed to analyse the vast quantities of data available from different heterogeneous sources. This data can aid decision-makers in planning better strategies for urban transportation. We used the origin-destination matrices already available for Valencia city (Spain), as well as historical information for their street induction-loops and the phases and times of their traffic light system as our input data for the traffic model. Rather than a brute-force algorithm, we used a fast-convergence Lagrangian algorithm model which deals with that vast quantities of information. Based on the elements mentioned above together with the statistics about the types of vehicles in the city by simulations the urban mobility city's traffic was reconstructed at different times to quantify the emissions produced with a high spatial and temporal resolution.


Michael G.H. Bell. The estimation of origin-destination matrices by constrained generalised least squares. Transportation Research Part B, 25(1):13{22, 1991.

Laura Bieker, Daniel Krajzewicz, Andreas Leich, and Martin Dippold. Local Emissions Monitoring using vehicular communication. In SUMO 2016 { Traffic, Mobility, and Logistics, pages 165{172,2016.

Robin A. Blanchard, Anita M. Myers, and Michelle M. Porter. Correspondence between selfreported and objective measures of driving exposure and patterns in older drivers. Accident Analysis and Prevention, 42(2):523{529, 2010.

Chou-tsang Chang. Estimation of Carbon Dioxide Emissions Generated by Building and Traffic in Taichung City. 2018.

Direcciónn General de Tráfico. Portal estadistico de vehículos y conductores.

Direcciónn General de Tráfico. Movilidad: ciudadano&vehículo. Tráfico y Seguridad Vial, (248):60{61, 2018.

Ayuntamiento de Valencia. Centro de Gestiónn de Tráfico de Valencia, last accesed: 16th Jan,2020.

Conselleria d'Habitatge Obres Públiques i Vertebración del Territori. Pla Mobilitat Metropolitána Valéncia. Technical report, Generalitat Valenciana, Valencia, 2018.

Javier Doblas and Francisco G. Benitez. An approach to estimating and updating origindestination matrices based upon traffic counts preserving the prior structure of a survey matrix. Transportation Research Part B: Methodological, 39(7):565{591, 2005.

Grupo ETRA. Barcelona Traffic Regulation Systems, last accesed: 16th Jan, 2020.

Eclipse Foundation. Simulation of Urban MObility, 2020., Last checked on 2020/09/14.

Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flotterod, Robert Hilbrich, Leonhard Lucken, Johannes Rummel, Peter Wagner, and Evamarie Wiener. Microscopic traffic simulation using sumo. In The 21st IEEE International Conference on Intelligent Transportation Systems. IEEE, 2018.

Sims R., R. Schaeer, F. Creutzig, X. Cruz-Nuñez, M. D'Agosto, D. Dimitriu, M. J. Figueroa Meza, L. Fulton, S. Kobayashi, O. Lah, A. McKinnon, P. Newman, M. Ouyang, J. J. Schauer,D. Sperling and G. Tiwari. Transport. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III. Technical report, 2014.

Jorge Luis Zambrano-Martinez, Carlos T. Calafate, David Soler, Lenin Guillermo Lemus-Zuñiga, Juan Carlos Cano, Pietro Manzoni, and Thierry Gayraud. A centralized route-management solution for autonomous vehicles in urban areas. Electronics (Switzerland), 8(7):1{21, 2019.




How to Cite

Luzuriaga Quichimbo, J. E., Moreno-Perez, J.-A. ., Lorenzo-Sáez, E. ., Mira Prats, S. ., Urchueguía Schölzel, J. F., Lemus Zúñiga, L. G., Oliver Villanueva, J. V., & Mateo Pla, M. Ángel. (2022). Estimation of Green House Gas and Contaminant Emissions from Traffic by microsimulation and refined Origin-Destination matrices: a methodological approach. SUMO Conference Proceedings, 1, 27–37.



Conference papers