Observation of an Injection Dependent Lifetime Effect in Highly Hydrogenated Boron Doped Wafers
DOI:
https://doi.org/10.52825/siliconpv.v3i.2669Keywords:
Crystalline Silicon, Degradation, Hydrogen, Solar CellAbstract
The correlation between hydrogen content and boron-oxygen related degradation is under debate. In this study surface passivated boron doped silicon wafers with different hydrogen content were illuminated at room temperature with three different light intensities. Their lifetime degradation was monitored with quasi-steady state photoconductance. A characteristic degradation that is separated into a fast and a slow decay characteristic for all light intensities is expected for such wafers. However, with increasing hydrogen content, we observe that the initial lifetime prior to illumination decreases, reducing the fast decay part of the degradation curves. For low intensity illumination the samples with reduced initial lifetimes follow the predicted degradation curve and show only the slow decay. For higher light intensities the degradation curves differ considerably; there is first a temporary lifetime increase before the decay sets in.
Downloads
References
[1] T. U. Nærland, H. Haug, H. Angelskår, R. Søndenå, E. S. Marstein, and L. Arnberg, “Studying Light-Induced Degradation by Lifetime Decay Analysis: Excellent Fit to Solution of Simple Second-Order Rate Equation,” IEEE J. Photovolt., vol. 3, no. 4, pp. 1265–1270, 2013, doi: 10.1109/jphotov.2013.2278663.
[2] T. Niewelt, J. Schön, W. Warta, S. W. Glunz, and M. C. Schubert, “Degradation of crys-talline silicon due to boron oxygen defects,” IEEE J. Photovolt., vol. 7, no. 1, pp. 383–398, 2017, doi: 10.1109/JPHOTOV.2016.2614119.
[3] K. Bothe and J. Schmidt, “Fast-forming boron-oxygen-related recombination center in crystalline silicon,” Appl. Phys. Lett., vol. 87, no. 26, p. 262108, 2005, doi: 10.1063/1.2147727.
[4] H. Hashigami, Y. Itakura, and T. Saitoh, “Effect of illumination conditions on Czochralski-grown silicon solar cell degradation,” J. Appl. Phys., vol. 93, no. 7, pp. 4240–4245, 2003, doi: 10.1063/1.1559430.
[5] J. Schmidt and K. Bothe, “Structure and transformation of the metastable boron- and ox-ygen-related defect center in crystalline silicon,” Phys. Rev. B, vol. 69, no. 2, p. 24107, 2004, doi: 10.1103/PhysRevB.69.024107.
[6] T. U. Nærland, H. Angelskår, M. Kirkengen, R. Søndenå, and E. S. Marstein, “The role of excess minority carriers in light induced degradation examined by photoluminescence imaging,” J. Appl. Phys., vol. 112, no. 3, p. 33703, 2012, doi: 10.1063/1.4735992.
[7] T. U. Nærland, H. Angelskår, and E. S. Marstein, “Direct monitoring of minority carrier density during light induced degradation in Czochralski silicon by photoluminescence im-aging,” J. Appl. Phys., vol. 113, no. 19, p. 193707, 2013, doi: 10.1063/1.4806999.
[8] A. Herguth, G. Schubert, M. Kaes, and G. Hahn, “Avoiding Boron-Oxygen Related Deg-radation in Highly Boron Doped Cz Silicon,” in 21st EUPVSEC, Dresden, Germany, 2006.
[9] A. Herguth, G. Schubert, M. Kaes, and G. Hahn, “Investigations on the long time Behav-ior of the metastable Boron-Oxygen complex in crystalline silicon,” Prog. Photovolt., vol. 16, no. 2, 2008, doi: 10.1002/pip.779.
[10] B. Hallam, A. Herguth, P. Hamer, N. Nampalli, S. Wilking, M. Abbott, S. Wenham, and G. Hahn, “Eliminating Light-Induced Degradation in Commercial p-Type Czochralski Silicon Solar Cells,” Appl. Sci., vol. 8, no. 1, 2018, doi: 10.3390/app8010010.
[11] R. Søndenå, P. M. Weiser, E. V. Monakhov, and H. Haug, “The Effect of Hydrogen on Boron-Oxygen-Related Degradation and Regeneration in Crystalline Silicon,” in 40th EUPVSEC, Lisbon, Portugal, 2023. doi: 10.4229/EUPVSEC2023/1AO.4.5.
[12] K. A. Münzer, “Hydrogenated Silicon Nitride for Regeneration of Light Induced Degrada-tion,” in 24th EUPVSEC, Hamburg, Germany: WIP, 2009, pp. 1558–1561. doi: 10.4229/24thEUPVSEC2009-2CV.2.43.
[13] N. Nampalli, B. J. Hallam, C. E. Chan, M. D. Abbott, and S. R. Wenham, “Influence of Hydrogen on the Mechanism of Permanent Passivation of Boron–Oxygen Defects in p-Type Czochralski Silicon,” IEEE J. Photovolt., vol. 5, no. 6, pp. 1580–1585, 2015, doi: 10.1109/JPHOTOV.2015.2466457.
[14] S. Wilking, A. Herguth, and G. Hahn, “Influence of hydrogenated passivation layers on the regeneration of boron-oxygen related defects,” Energy Procedia, vol. 38, pp. 642–648, 2013, doi: 10.1016/j.egypro.2013.07.328.
[15] D. C. Walter and J. Schmidt, “Impact of hydrogen on the permanent deactivation of the boron-oxygen-related recombination center in crystalline silicon,” Sol. Energy Mater. Sol. Cells, vol. 158, pp. 91–97, 2016, doi: 10.1016/j.solmat.2016.05.025.
[16] T. O. Abdul Fattah, V. P. Markevich, J. A. T. De Guzman, J. Coutinho, S. B. lastovskii, I. D. Hawkins, I. F. Crowe, M. P. Halsall, and A. R. Peaker, “Interactions of Hydrogen At-oms with Acceptor–Dioxygen Complexes in Czochralski-Grown Silicon,” Phys. Status Solidi A, vol. 219, no. 17, p. 2200176, 2022, doi: 10.1002/pssa.202200176.
[17] V. Voronkov and R. Falster, “Permanent deactivation of boron–oxygen recombination centres in silicon,” Phys. Status Solidi B, vol. 253, no. 9, pp. 1721–1728, 2016, doi: 10.1002/pssb.201600082.
[18] V. V. Voronkov, R. Falster, K. Bothe, B. Lim, and J. Schmidt, “Lifetime-degrading boron-oxygen centres in p-type and n-type compensated silicon,” J. Appl. Phys., vol. 110, no. 6, p. 063515, 2011, doi: 10.1063/1.3609069.
[19] F. E. Rougieux, M. Forster, D. Macdonald, A. Cuevas, B. Lim, and J. Schmidt, “Recom-bination Activity and Impact of the Boron-Oxygen-Related Defect in Compensated n-Type Silicon,” IEEE J. Photovolt., vol. 1, no. 1, pp. 54–58, 2011, doi: 10.1109/JPHOTOV.2011.2165698.
[20] V. V. Voronkov and R. Falster, “Light-Induced Boron-Oxygen Recombination Centres in Silicon: Understanding their Formation and Elimination,” Solid State Phenom., vol. 205–206, pp. 3–14, 2014, doi: 10.4028/www.scientific.net/SSP.205-206.3.
[21] N. Nampalli, T. H. Fung, S. Wenham, B. Hallam, and M. Abbott, “Statistical analysis of recombination properties of the boron-oxygen defect in p-type Czochralski silicon,” Front. Energy, vol. 11, no. 1, pp. 4–22, 2017, doi: 10.1007/s11708-016-0442-6.
[22] B. Hallam, M. Abbott, T. Nærland, and S. Wenham, “Fast and slow lifetime degradation in boron-doped Czochralski silicon described by a single defect,” Phys. Status Solidi RRL, vol. 10, no. 7, pp. 520–524, 2016, doi: 10.1002/pssr.201600096.
[23] K. Ramspeck, S. Zimmermann, H. Nagel, A. Metz, Y. Gassenbauer, B. Birkmann, and A. Seidl., “Light induced degradation of rear passivated solar cells,” in 27th EUPVSEC, Frankfurt, Germany, 2012, doi: 10.1017/CBO9781107415324.004.
[24] F. Kersten, P. Engelhart, H.-C. Ploigt, A. Stekolnikov, T. Lindner, F. Stenzel, M. Bartzsch, A. Szpeth, K. Petter, J. Heitmann, and J. W. Müller, “Degradation of multicrystalline sili-con solar cells and modules after illumination at elevated temperature,” Sol. Energy Ma-ter. Sol. Cells, vol. 142, pp. 83–86, 2015, doi: 10.1016/j.solmat.2015.06.015.
[25] M. A. Jensen, A. Zuschlag, S. Wieghold, D. Skorka, A. E. Morishge, G. Hahn, and T. Buonassisi, “Evaluating root cause: The distinct roles of hydrogen and firing in activating light- and elevated temperature-induced degradation,” J. Appl. Phys., vol. 124, no. 8, 2018, doi: 10.1063/1.5041756.
[26] D. Bredemeier, D. C. Walter, and J. Schmidt, “Lifetime degradation in multicrystalline silicon under illumination at elevated temperature: Indications for the involvement of hy-drogen,” AIP Conf. Proc., vol. 1999, 2018, doi: 10.1063/1.5049320.
[27] B. Hammann, F. Schindler, J. Schön, W. Kwapil, M. C. Schubert, and S. W. Glunz, “Re-view on hydrogen in silicon solar cells: From its origin to its detrimental effects,” Sol. En-ergy Mater. Sol. Cells, vol. 282, p. 113432, 2025, doi: 10.1016/j.solmat.2025.113432.
[28] C. Vargas, G. Coletti, C. Chan, D. Payne, and Z. Hameiri, “On the impact of dark anneal-ing and room temperature illumination on p-type multicrystalline silicon wafers,” Sol. En-ergy Mater. Sol. Cells, vol. 189, pp. 166–174, 2019, doi: https://doi.org/10.1016/j.solmat.2018.09.018.
[29] T. Luka, M. Turek, and C. Hagendorf, “Defect formation under high temperature dark-annealing compared to elevated temperature light soaking,” Sol. Energy Mater. Sol. Cells, vol. 187, pp. 194–198, 2018, doi: https://doi.org/10.1016/j.solmat.2018.06.043.
[30] W. Kwapil, J. Dalke, R. Post, and T. Niewelt, “Influence of Dopant Elements on Degrada-tion Phenomena in B- and Ga-Doped Czochralski-Grown Silicon,” Sol. RRL, vol. 5, no. 5, 2021, doi: https://doi.org/10.1002/solr.202100147.
[31] F. T. Thome, C. Yilmaz, W. Kwapil, F. Schindler, and M. C. Schubert, “Why is gallium-doped silicon (sometimes) stable? Kinetics of light and elevated temperature induced deg-radation,” Sol. Energy Mater. Sol. Cells, vol. 275, p. 112986, 2024, doi: 10.1016/j.solmat.2024.112986.
[32] M. Winter, D. C. Walter, and J. Schmidt, “Carrier Lifetime Degradation and Regeneration in Gallium- and Boron-Doped Monocrystalline Silicon Materials,” IEEE J. Photovolt., vol. 11, no. 4, pp. 866–872, 2021, doi: 10.1109/JPHOTOV.2021.3070474.
[33] V. V. Voronkov and R. Falster, “Formation, dissociation, and diffusion of various hydro-gen dimers in silicon,” Phys. Status Solidi B, vol. 254, no. 6, p. 1600779, 2017, doi: 10.1002/pssb.201600779.
[34] D. C. Walter, D. Bredemeier, R. Falster, V. V. Voronkov, and J. Schmidt, “Easy-to-apply methodology to measure the hydrogen concentration in boron-doped crystalline silicon,” Sol. Energy Mater. Sol. Cells, vol. 200, p. 109970, 2019, doi: 10.1016/j.solmat.2019.109970.
[35] D. Bredemeier, D. C. Walter, R. Heller, and J. Schmidt, “Impact of Hydrogen-Rich Silicon Nitride Material Properties on Light-Induced Lifetime Degradation in Multicrystalline Sili-con,” Phys. Status Solidi RRL, vol. 13, no. 8, p. 1900201, 2019, doi: 10.1002/pssr.201900201.
[36] C. Winter, J. Simon, and A. Herguth, “Study on Boron–Hydrogen Pairs in Bare and Pas-sivated Float-Zone Silicon Wafers,” Phys. Status Solidi A, vol. 218, no. 23, p. 2100220, 2021, doi: 10.1002/pssa.202100220.
[37] C. Winter and A. Herguth, “Contacted resistance measurements for the quantification of boron-hydrogen pairs in crystalline silicon,” AIP Conf. Proc., vol. 2487, no. 1, p. 130016, 2022, doi: 10.1063/5.0089294.
[38] R. Søndenå, P. M. Weiser, and E. Monakhov, “Direct and Indirect Determination of Hy-drogen-Boron Complexes in Float-Zone Silicon Wafers,” AIP Conf. Proc., vol. 2487, p. 130012, 2022, doi: 10.1063/5.0089274.
[39] R. Søndenå, P. M. Weiser, F. Mosel, N. Aẞmann, P.-A. Hansen, and E. Monakhov, “Controlling the hydrogen concentration in boron- and gallium-doped silicon wafers,” AIP Conf. Proc., vol. 2826, no. 1, p. 110008, 2023, doi: 10.1063/5.0141155.
[40] D. C. Walter, D. Bredemeier, R. Falster, V. V. Voronkov, and J. Schmidt, “Easy-to-apply methodology to measure the hydrogen concentration in boron-doped crystalline silicon,” Sol. Energy Mater. Sol. Cells, vol. 200, p. 109970, 2019, doi: 10.1016/j.solmat.2019.109970.
[41] M. Stavola, Identification of Defects in Semiconductors, Volume 51B. Boston, MA: Aca-demic Press, 1998. [Online]. Available: https://www.elsevier.com/books/identification-of-defects-in-semiconductors/willardson/978-0-12-752165-7
[42] M. Stavola and W. B. Fowler, “Tutorial: Novel properties of defects in semiconductors revealed by their vibrational spectra,” J. Appl. Phys., vol. 123, no. 16, p. 161561, 2018, doi: 10.1063/1.5011036.
[43] H. Haug, R. Søndenå, M. S. Wiig, and E. S. Marstein, “Temperature dependent photolu-minescence imaging calibrated by photoconductance measurements,” Energy Procedia, vol. 124, no. Supplement C, pp. 47–52, 2017, doi: 10.1016/j.egypro.2017.09.338.
[44] R. Søndenå and M. S. Wiig, “Evolution of the light sensitive defects in high performance multicrystalline silicon wafers,” J. Appl. Phys., vol. 125, no. 8, p. 85701, 2019, doi: 10.1063/1.5079496.
[45] R. Søndenå, H. Haug, C. C. You, J. Zhu, and M. S. Wiig, “Evolution of defect densities with height in a HPMC-Si ingot,” AIP Conf. Proc., vol. 2147, no. 1, p. 140010, 2019, doi: 10.1063/1.5123897.
[46] S. Rein, T. Rehrl, W. Warta, and S. W. Glunz, “Lifetime spectroscopy for defect charac-terization: Systematic analysis of the possibilities and restrictions,” J. Appl. Phys., vol. 91, no. 4, pp. 2059–2070, 2002, doi: 10.1063/1.1428095.
[47] P. M. Weiser, E. V. Monakhov, H. Haug, M. S. Wiig, and R. Søndenå, “Hydrogen-related defects measured by infrared spectroscopy in multicrystalline silicon wafers throughout an illuminated annealing process,” J. Appl. Phys., vol. 127, p. 065703, 2020, doi: 10.1063/1.5142476.
[48] M. Stavola, S. J. Pearton, J. Lopata, and W. C. Dautremont‐Smith, “Vibrational charac-teristics of acceptor‐hydrogen complexes in silicon,” Appl. Phys. Lett., vol. 50, no. 16, pp. 1086–1088, 1987, doi: 10.1063/1.97978.
[49] M. Kim, M. Abbott, N. Nampalli, S. Wenham, B. Stefani, and B. Hallam, “Modulating the extent of fast and slow boron-oxygen related degradation in Czochralski silicon by ther-mal annealing: Evidence of a single defect,” J. Appl. Phys., vol. 121, no. 5, 2017, doi: 10.1063/1.4975685.
[50] J. Schmidt, D. Bredemeier, and D. C. Walter, “On the Defect Physics Behind Light and Elevated Temperature-Induced Degradation (LeTID) of Multicrystalline Silicon Solar Cells,” IEEE J. Photovolt., vol. 9, no. 6, 2019, doi: 10.1109/JPHOTOV.2019.2937223.
[51] K. Nakayashiki, J. Hofstetter, A. E. Morishige, T.-T. A. Li, D. B. Needleman, and M. Jen-sen, “Engineering Solutions and Root-Cause Analysis for Light-Induced Degradation in p-Type Multicrystalline Silicon PERC Modules,” IEEE J. Photovolt., vol. 6, pp. 860–868, 2016.
[52] A. E. Morishige, M. A Jensen, D. B. Needleman, K. Nakayasihiki, J. Hofstetter, T.-T. A. Li, and T. Buonassisi, “Lifetime Spectroscopy Investigation of Light-Induced Degradation in p-type Multicrystalline Silicon PERC,” IEEE J. Photovolt., vol. 6, no. 6, pp. 1466–1472, 2016, doi: 10.1109/JPHOTOV.2016.2606699.
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Rune Søndenå, Nicole Aßmann, Frank Mosel, Per-Anders Hansen

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-09-04
Published 2026-01-13
Funding data
-
Norges Forskningsråd
Grant numbers 257639;295864