Numerical Simulation of Flexible Silicon Heterojunction Solar Cell with 27.2% Efficiency
DOI:
https://doi.org/10.52825/siliconpv.v3i.2681Keywords:
Flexible Photovoltaic, Solar Cell, Hetero-Junction, Photonic CrystalAbstract
In this article, we numerically demonstrate 27.2% power conversion efficiency in a 15μm-thick, flexible photonic crystal (PhC) silicon heterojunction cell (SHJ). This new class of SHJ cell combines the superior electronic performance of hetero-junction contacts with the wave interference-based light-trapping capability of thin-film silicon PhC, surpassing the traditional Lambertian limit. Through numerical simulations, we show that our flexible PhC-SHJ cell is capable of achieving a short-circuit current density of 44.31mA/cm2 and an open circuit voltage of 756.8mV, paving the way for flexible photovoltaic technology with efficiency beyond 27%.
Downloads
References
[1] H. Lin, M. Yang, X. Ru, G. Wang, S. Yin, F. Peng, C. Hong, M. Qu, J. Lu, L. Fang, C. Han, P. Procel, O. Isabella, P. Gao, Z. Li, and X. Xu, “Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers,” Nature Energy, vol. 8, pp. 789–799, Aug 2023. https://doi.org/10.1038/s41560-023-01255-2
[2] P. Wawer, J. Müller, M. Fischer, P. Engelhart, A. Mohr, and K. Petter, “Latest trends in development and manufacturing of industrial, crystalline silicon solar-cells,” Energy Pro-cedia, vol. 8, pp. 2–8, 2011. https://doi.org/10.1016/j.egypro.2011.06.093
[3] S. Bhattacharya and S. John, “Beyond 30% conversion efficiency in silicon solar cells: A numerical demonstration,” Scientific Reports, vol. 9, Dec 2019. https://doi.org/10.1038/s41598-019-48981-w
[4] M. L. Hsieh, A. Kaiser, S. Bhattacharya, S. John, and S. Y. Lin, “Experimental demon-stration of broadband solar absorption beyond the Lambertian limit in certain thin silicon photonic crystals,” Scientific Reports, vol. 10, Dec 2020. https://doi.org/10.1038/s41598-020-68704-w
[5] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nature Energy, vol. 2, Mar 2017. https://doi.org/10.1038/nenergy.2017.32
[6] A. Richter, R. Müller, J. Benick, F. Feldmann, B. Steinhauser, C. Reichel, A. Fell, M. Biv-our, M. Hermle, and S. W. Glunz, “Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses,” Na-ture Energy, vol. 6, pp. 429–438, Apr 2021. https://doi.org/10.1038/s41560-021-00805-w
[7] B. Min, M. Müller, H. Wagner, G. Fischer, R. Brendel, P. P. Altermatt, and H. Neuhaus, “A roadmap toward 24% efficient perc solar cells in industrial mass production,” IEEE Journal of Photovoltaics, vol. 7, no. 6, pp. 1541–1550, Nov 2017. https://doi.org/10.1109/JPHOTOV.2017.2749007
[8] S. W. Glunz, B. Steinhauser, J. I. Polzin, C. Luderer, B. Grübel, T. Niewelt, A. M. Oka-sha, M. Bories, H. Nagel, K. Krieg, F. Feldmann, A. Richter, M. Bivour, and M. Hermle, “Silicon-based passivating contacts: The TOPCon route,” Progress in Photovoltaics: Re-search and Applications, vol. 31, pp. 341–359, Apr 2023. https://doi.org/10.1002/pip.3522
[9] Z. Peng and G. Ling, “Design, fabrication and characterization of thin-film materials for heterojunction silicon wafer solar cells,” Thesis, 2014. [Online]. Available: https://www.researchgate.net/publication/276355293.
[10] D. Qiu, W. Duan, A. Lambertz, K. Bittkau, P. Steuter, Y. Liu, A. Gad, M. Pomaska, U. Rau, and K. Ding, “Front contact optimization for rear-junction SHJ solar cells with ultra-thin n-type nanocrystalline silicon oxide,” Solar Energy Materials and Solar Cells, vol. 209, Jun 2020. https://doi.org/10.1016/j.solmat.2020.110471
[11] H. Nasser, F. Es, M. Z. Borra, E. Semiz, G. K¨okbudak, E. Orhan, and R. Turan, “On the application of hole-selective moox as full-area rear contact for industrial scale p-type c-si solar cells,” Progress in Photovoltaics: Research and Applications, vol. 29, pp. 281–293, Mar 2021. https://doi.org/10.1002/pip.3363
[12] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency hit solar cell on thin silicon wafer,” IEEE Journal of Photovoltaics, vol. 4, pp. 96–99, Jan 2014. https://doi.org/10.1109/JPHOTOV.2013.2282737
[13] A. Fell, K. R. McIntosh, P. P. Altermatt, G. J. Janssen, R. Stangl, A. Ho-Baillie, H. Stein-kemper, J. Greulich, M. Muller, B. Min, K. C. Fong, M. Hermle, I. G. Romijn, and M. D. Abbott, “Input parameters for the simulation of silicon solar cells in 2014,” IEEE Journal of Photovoltaics, vol. 5, pp. 1250–1263, Jul 2015. https://doi.org/10.1109/JPHOTOV.2015.2430016
[14] R. Brendel, S. Dreissigacker, N.-P. Harder, and P. P. Altermatt, “Theory of analyzing free energy losses in solar cells,” Applied Physics Letters, vol. 93, no. 17, p. 173503, Oct 2008. https://doi.org/10.1063/1.3006053.
[15] C. N. Kruse, K. Bothe, and R. Brendel, “Comparison of free energy loss analysis and synergistic efficiency gain analysis for perc solar cells,” IEEE Journal of Photovoltaics, vol. 8, no. 3, pp. 683–688, May 2018. 10.1109/JPHOTOV.2018.2802779
[16] R. Woehl, M. Hörteis, and S. W. Glunz, “Analysis of the optical properties of screen-printed and aerosol-printed and plated fingers of silicon solar cells,” Advances in OptoE-lectronics, vol. 2008, no. 1, p. 759340, Sep 2008. https://doi.org/10.1155/2008/759340
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Deep Shikha, Sayak Bhattacharya

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-10-24
Published 2026-01-13