Low-Loss Singulation of TOPCon Half Solar Cells by TLS and Al2O3 Edge Passivation

Authors

DOI:

https://doi.org/10.52825/siliconpv.v3i.2689

Keywords:

Edge Passivation, Passivated Edge Technology, TOPCon, Half Solar Cells, Thermal Laser Separation, TLS, Singulation, PE-ALD, Laser Enhanced Contact Optimization, LECO

Abstract

This work addresses the separation of tunnel-oxide passivated contact (TOPCon) host solar cells into half solar cells. It demonstrates the feasibility of achieving almost loss-free cell performance after edge passivation by the passivated edge technology (PET). It is shown that edge passivation with aluminum oxide (Al2O3) is also compatible with TOPCon solar cells that have been fabricated with Al-free Ag screen printing paste for the front side finger contacts applying laser-enhanced contact optimization (LECO). The half solar cells, with an edge length of 182 mm x 91 mm, are separated from industrial pseudo-square M10-format TOPCon host solar cells by thermal laser separation (TLS) from the front side. An optimized TLS process results in an efficiency loss of only slightly above 0.1%abs. A high-throughput prototype tool with a capacity of about 16,000 half solar cells per run is used for an Al2O3 layer deposition on the cut edges. Using optimized processes, the PET recovered approximately 85%rel of the cutting losses in pseudo fill factor by applying Al2O3 edge passivation and annealing. Thus, TLS in combination with high-throughput Al2O3 edge passivation is a viable approach for industrial fabrication of highly efficient TOPCon half solar cells, whether LECO and Al-free Ag pastes are applied or not.

Downloads

Download data is not yet available.

References

M. Hermle, J. Dicker, W. Warta, S. W. Glunz and G. Willeke, “Analysis of edge recombi-nation for high-efficiency solar cells at low illumination densities”, 3rd WCPEC, Osaka, Japan, pp. 1009–1012, 2003.

H.-U. Zuehlke, G. Eberhardt, P. Mende, “TLS-dicing – the way to higher yield and throughput”, 2008 International Symposium on Semiconductor Manufacturing (ISSM), Tokyo, Japan, pp. 301–304, 2008.

S. Weinhold, A. Gruner, R. Ebert, J. Schille and H. Exner, “Study of fast laser induced cutting of silicon materials”, SPIE 8967, Laser Applications in Microelectronic and Optoe-lectronic Manufacturing, San Francisco, USA, 89671J, 2014, doi: https://doi.org/10.1117/12.2039819.

M. Turek, O. Breitenstein, S. Eiternick, S. Bharatula and S. Großer, “Evaluation of het-erojunction solar cell losses due to half-cell processes”, 37th EU PVSEC, Online, pp. 474–477, 2020, doi: https://doi.org/10.4229/EUPVSEC20202020-2DV.3.2.

S. Eiternick, K. Kaufmann, J. Schneider and M. Turek, “Loss analysis for laser separated solar cells”, Energy Proced., vol. 55, pp. 326–330, 2014, doi: https://doi.org/10.1016/j.egypro.2014.08.094.

A. Fell, H. Sträter, M. Müller, H. Steinkemper, J. Schön, M. Hermle et al., “Modelling of edge recombination losses in half-cells”, 33rd EU PVSEC, Amsterdam, The Netherlands, 853 - 856, 2017, doi: https://doi.org/10.4229/EUPVSEC20172017-2CV.2.36.

A. Fell, J. Schön, M. Müller, N. Wöhrle, M. C. Schubert and S. W. Glunz, “Modeling edge recombination in silicon solar cells”, IEEE J. Photovoltaics, vol. 8, no. 2, pp. 428–434, 2018, doi: https://doi.org/10.1109/JPHOTOV.2017.2787020.

J. Zhao, A. Wang, P. P. Altermatt and G. Zhang, “Peripheral loss reduction of high effi-ciency silicon solar cells by MOS gate passivation, by poly-Si filled grooves and by cell pattern design”, Prog. Photovolt.: Res. Appl., vol. 8, no. 2, pp. 201–210, 2000, doi: https://doi.org/10.1002/(SICI)1099-159X(200003/04)8:2<201::AID-PIP288>3.0.CO;2-V.

J.-H. Guo, J. E. Cotter, K. R. McIntosh, K. Fisher, F. W. Chen and A. Karpour, “Edge passivation for small-area, high efficiency solar cells”, 22nd EU PVSEC, Milan, Italy, pp. 1348–1351, 2007.

P. Baliozian, N. Klasen, N. Wöhrle, C. Kutter, H. Stolzenburg, A. Münzer et al., “PERC-based shingled solar cells and modules at Fraunhofer ISE”, Photovoltaics International, no. 43, 129-145, 2019.

P. Baliozian, M. Al-Akash, E. Lohmüller, A. Richter, T. Fellmeth, A. Münzer et al., “Post-metallization "passivated edge technology" for separated silicon solar cells”, IEEE J. Pho-tovoltaics, vol. 10, no. 2, pp. 390–397, 2020, doi: https://doi.org/10.1109/JPHOTOV.2019.2959946.

F. Feldmann, M. Bivour, C. Reichel, M. Hermle and S. W. Glunz, “Passivated rear con-tacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics”, Sol. Energy Mater. Sol. Cells, vol. 120, pp. 270–274, 2014, doi: https://doi.org/10.1016/j.solmat.2013.09.017.

E. Lohmüller, P. Baliozian, L. Gutmann, L. Kniffki, A. Richter, L. Wang et al., “TOPCon shingle solar cells: Thermal laser separation and passivated edge technology”, Prog. Pho-tovolt.: Res. Appl., vol. 31, no. 7, pp. 729–737, 2023, doi: https://doi.org/10.1002/pip.3680.

E. Lohmüller, P. Baliozian, L. Gutmann, L. Kniffki, V. Beladiya, J. Geng et al., “Thermal laser separation and high-throughput layer deposition for edge passivation for TOPCon shingle solar cells”, Sol. Energy Mater. Sol. Cells, vol. 258, p. 112419, 2023, doi: https://doi.org/10.1016/j.solmat.2023.112419.

A. Münzer, P. Baliozian, A. Steinmetz, T. Geipel, S. Pingel, A. Richter et al., “Post-separation processing for silicon heterojunction half solar cells with passivated edges”, IEEE J. Photovoltaics, vol. 11, no. 6, pp. 1343–1349, 2021, doi: https://doi.org/10.1109/JPHOTOV.2021.3099732.

W. Li, R. Zhou, Y. Wang, Q. Su, J. Yang, M. Xi et al., “Preparation of Al2O3 thin films by RS-ALD and edge passivation application for TOPCon half solar cells”, Appl. Surf. Sci., vol. 673, 160835, 2024, doi: https://doi.org/10.1016/j.apsusc.2024.160835.

R. Zhou, W. Li, B. Ge, J. Song, Q. Su, M. Xi et al., “Optimization of the deposited Al2O3 thin film process by RS-ALD and edge passivation applications for half-solar cells”, Ce-ramics International, vol. 51, no. 3, pp. 2840–2845, 2025, doi: https://doi.org/10.1016/j.ceramint.2024.11.261.

S. Harrison, A. Bettinelli, B. Portaluppi, V. Giglia, C. Carrière, A. Sekkat et al., “Challeng-es for efficient integration of SHJ based solar cells in shingle module configuration”, 37th EU PVSEC, Online, pp. 223–227, 2020, doi: https://doi.org/10.4229/EUPVSEC20202020-2BO.5.5.

S. Harrison, V. Barth, C. Carriere, M. Albaric, B. Martel, M. Galiazzo et al., “Simplified cell cutting, efficient edge passivation, copper metallization: Tackling the last hurdles for optimized SHJ integration in shingle module configuration”, 8th WCPEC, Milan, Italy, 55 - 58, 2022, doi: https://doi.org/10.4229/WCPEC-82022-1BO.2.1.

B. Martel, M. Albaric, S. Harrison, F. Dhainaut and T. Desrues, “Addressing separation and edge passivation challenges for high efficiency shingle heterojunction solar cells”, Sol. Energy Mater. Sol. Cells, vol. 250, 112095, 2023, doi: https://doi.org/10.1016/j.solmat.2022.112095.

E. Krassowski, S. Großer, M. Turek, H. Höffler, “Laser enhanced contact optimization–a novel technology for metal-semiconductor-contact optimization for crystalline silicon solar cells”, 37th EU PVSEC, Online, 2020.

T. Fellmeth, H. Höffler, S. Mack, E. Krassowski, K. Krieg, B. Kafle et al., “Laser‐enhanced contact optimization on iTOPCon solar cells”, Prog. Photovolt.: Res. Appl., vol. 30, no. 12, pp. 1393–1399, 2022, doi: https://doi.org/10.1002/pip.3598.

A. Mette, S. Hörnlein, F. Stenzel, R. Hönig, I. Höger, M. Schaper et al., “Q.ANTUM NEO with LECO exceeding 25.5 % cell efficiency”, Sol. Energy Mater. Sol. Cells, vol. 277, p. 113110, 2024, doi: https://doi.org/10.1016/j.solmat.2024.113110.

Downloads

Published

2025-12-17

How to Cite

Lohmüller, E., Kohn, N., Maischner, F., Hashemi, H., Göbel, A., Huyeng, J. D., … Preu, R. (2025). Low-Loss Singulation of TOPCon Half Solar Cells by TLS and Al2O3 Edge Passivation. SiliconPV Conference Proceedings, 3. https://doi.org/10.52825/siliconpv.v3i.2689

Conference Proceedings Volume

Section

Advances in Industrial Silicon Solar Cells
Received 2025-04-10
Accepted 2025-06-12
Published 2025-12-17

Funding data