Thermally Stable Epiwafers for PV Applications

Authors

DOI:

https://doi.org/10.52825/siliconpv.v3i.2690

Keywords:

Epiwafers, Boron-Diffusion, Thermal-Stability

Abstract

This work assesses the thermal stability of n-type Epiwafers after a boron diffusion based on the carrier lifetime measurements and photoluminescence images. The Epiwafers show a high bulk quality (iVoc > 735-745 mV) in their initial state after passivation with PECVD SiNx:H films. After a customized thermal budget for boron diffusion, the Epiwafers did not show any significant degradation, suggesting their high thermal stability. In contrast, some n-type Czochralski (nCz) silicon control samples degraded significantly (∆i Voc = -30 mV) due to the formation of ring defects during boron diffusion.

Downloads

Download data is not yet available.

References

[1] C. Rittmann et al., “Toward Highly Efficient Low‐Carbon Footprint Solar Cells: Impact of High‐Temperature Processing on Epitaxially Grown p‐Type Silicon Wafers,” Sol. RRL, vol. 8, no. 4, Feb. 2024, doi: 10.1002/solr.202300882.

[2] C. Rittmann et al., “Epitaxially Grown p‐type Silicon Wafers Ready for Cell Efficiencies Exceeding 25%,” Sol. RRL, vol. 7, no. 8, Apr. 2023, doi: 10.1002/solr.202200698.

[3] NexWafe, “NexWafe Hits Key Milestones in Solar Efficiency and Scalability,” 2024.

[4] G. Coletti et al., “Impact of Metal Contamination in Silicon Solar Cells,” Adv. Funct. Ma-ter., vol. 21, no. 5, pp. 879–890, Mar. 2011, doi: 10.1002/adfm.201000849.

[5] R. Basnet, M. Siriwardhana, H. T. Nguyen, and D. Macdonald, “Impact of Gettering and Hydrogenation on Sub-Band-Gap Luminescence from Ring Defects in Czochralski-Grown Silicon,” ACS Appl. Energy Mater., vol. 4, no. 10, pp. 11258–11267, Oct. 2021, doi: 10.1021/acsaem.1c02100.

[6] K. F. Kelton, R. Falster, D. Gambaro, M. Olmo, M. Cornara, and P. F. Wei, “Oxygen pre-cipitation in silicon: Experimental studies and theoretical investigations within the classical theory of nucleation,” J. Appl. Phys., vol. 85, no. 12, pp. 8097–8111, Jun. 1999, doi: 10.1063/1.370648.

[7] R. A. Sinton and A. Cuevas, “Contactless determination of current-voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconduct-ance data,” Appl. Phys. Lett., vol. 69, no. 17, pp. 2510–2512, 1996, doi: 10.1063/1.117723.

[8] T. Trupke, R. Bardos, M. Schubert, and W. Warta, “Photoluminescence imaging of sili-con wafers,” Appl. Phys. Lett., vol. 89, no. 4, pp. 44107–44107, 2006, doi: 10.1063/1.2234747.

[9] T. Niewelt et al., “Reassessment of the intrinsic bulk recombination in crystalline silicon,” Sol. Energy Mater. Sol. Cells, vol. 235, p. 111467, Jan. 2022, doi: 10.1016/j.solmat.2021.111467.

[10] R. Basnet, C. Sun, H. Wu, H. T. Nguyen, F. E. Rougieux, and D. Macdonald, “Ring de-fects in n-type Czochralski-grown silicon: A high spatial resolution study using Fourier-transform infrared spectroscopy, micro-photoluminescence, and micro-Raman,” J. Appl. Phys., vol. 124, no. 24, Dec. 2018, doi: 10.1063/1.5057724.

[11] A. Kashizadeh et al., “Auger-limited bulk lifetimes in industrial Czochralski-grown n-type silicon ingots with melt recharging,” Sol. Energy Mater. Sol. Cells, vol. 277, p. 113143, Oct. 2024, doi: 10.1016/j.solmat.2024.113143.

Downloads

Published

2026-01-20

How to Cite

Basnet, R., Winter, C., Bein, N., Heilig, M., Siebke, F., Vescovi, G., & Macdonald, D. (2026). Thermally Stable Epiwafers for PV Applications. SiliconPV Conference Proceedings, 3. https://doi.org/10.52825/siliconpv.v3i.2690

Conference Proceedings Volume

Section

Advances in Industrial Silicon Solar Cells
Received 2025-04-10
Accepted 2025-10-15
Published 2026-01-20