Thermally Stable Epiwafers for PV Applications
DOI:
https://doi.org/10.52825/siliconpv.v3i.2690Keywords:
Epiwafers, Boron-Diffusion, Thermal-StabilityAbstract
This work assesses the thermal stability of n-type Epiwafers after a boron diffusion based on the carrier lifetime measurements and photoluminescence images. The Epiwafers show a high bulk quality (iVoc > 735-745 mV) in their initial state after passivation with PECVD SiNx:H films. After a customized thermal budget for boron diffusion, the Epiwafers did not show any significant degradation, suggesting their high thermal stability. In contrast, some n-type Czochralski (nCz) silicon control samples degraded significantly (∆i Voc = -30 mV) due to the formation of ring defects during boron diffusion.
Downloads
References
[1] C. Rittmann et al., “Toward Highly Efficient Low‐Carbon Footprint Solar Cells: Impact of High‐Temperature Processing on Epitaxially Grown p‐Type Silicon Wafers,” Sol. RRL, vol. 8, no. 4, Feb. 2024, doi: 10.1002/solr.202300882.
[2] C. Rittmann et al., “Epitaxially Grown p‐type Silicon Wafers Ready for Cell Efficiencies Exceeding 25%,” Sol. RRL, vol. 7, no. 8, Apr. 2023, doi: 10.1002/solr.202200698.
[3] NexWafe, “NexWafe Hits Key Milestones in Solar Efficiency and Scalability,” 2024.
[4] G. Coletti et al., “Impact of Metal Contamination in Silicon Solar Cells,” Adv. Funct. Ma-ter., vol. 21, no. 5, pp. 879–890, Mar. 2011, doi: 10.1002/adfm.201000849.
[5] R. Basnet, M. Siriwardhana, H. T. Nguyen, and D. Macdonald, “Impact of Gettering and Hydrogenation on Sub-Band-Gap Luminescence from Ring Defects in Czochralski-Grown Silicon,” ACS Appl. Energy Mater., vol. 4, no. 10, pp. 11258–11267, Oct. 2021, doi: 10.1021/acsaem.1c02100.
[6] K. F. Kelton, R. Falster, D. Gambaro, M. Olmo, M. Cornara, and P. F. Wei, “Oxygen pre-cipitation in silicon: Experimental studies and theoretical investigations within the classical theory of nucleation,” J. Appl. Phys., vol. 85, no. 12, pp. 8097–8111, Jun. 1999, doi: 10.1063/1.370648.
[7] R. A. Sinton and A. Cuevas, “Contactless determination of current-voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconduct-ance data,” Appl. Phys. Lett., vol. 69, no. 17, pp. 2510–2512, 1996, doi: 10.1063/1.117723.
[8] T. Trupke, R. Bardos, M. Schubert, and W. Warta, “Photoluminescence imaging of sili-con wafers,” Appl. Phys. Lett., vol. 89, no. 4, pp. 44107–44107, 2006, doi: 10.1063/1.2234747.
[9] T. Niewelt et al., “Reassessment of the intrinsic bulk recombination in crystalline silicon,” Sol. Energy Mater. Sol. Cells, vol. 235, p. 111467, Jan. 2022, doi: 10.1016/j.solmat.2021.111467.
[10] R. Basnet, C. Sun, H. Wu, H. T. Nguyen, F. E. Rougieux, and D. Macdonald, “Ring de-fects in n-type Czochralski-grown silicon: A high spatial resolution study using Fourier-transform infrared spectroscopy, micro-photoluminescence, and micro-Raman,” J. Appl. Phys., vol. 124, no. 24, Dec. 2018, doi: 10.1063/1.5057724.
[11] A. Kashizadeh et al., “Auger-limited bulk lifetimes in industrial Czochralski-grown n-type silicon ingots with melt recharging,” Sol. Energy Mater. Sol. Cells, vol. 277, p. 113143, Oct. 2024, doi: 10.1016/j.solmat.2024.113143.
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Rabin Basnet, Clemens Winter, Nicole Bein, Matthias Heilig, Frank Siebke, Giuliano Vescovi, Daniel Macdonald

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-10-15
Published 2026-01-20