Local Series Resistance: Why the Model of Independent Diodes Fails and How to Understand Silicon Solar Cells in General by the LR-Rs Concept
DOI:
https://doi.org/10.52825/siliconpv.v3i.2714Keywords:
Local and Lumped Series Resistance, Voltage-Dependent Series Resistance, Illumination Intensity Variation Method, Linear-Response Concept, Model of Independent DiodesAbstract
The theoretical basics of the series resistance behavior of Si solar cells are reviewed and discussed, with an emphasis on the physical understanding of the linear response (LR) concept and the predominant role of experimental results. From this concept, a general fit model for the variation of the lumped series resistance along the I–V curve is derived. Important consequences of general validity for all series resistance determination methods are discussed, showing why the model of independent diodes is inappropriate for Si solar cells.
Downloads
References
[1] D. Clugston and B. Klöter, “Determination of distributed series resistance with industrial IV testers,” Talk given at PVSEC-35, Numazu, Japan, 14 Nov. 2024
[2] D. Clugston and B. Klöter, “Production-Ready Decomposition of Series Resistance into Lateral and Fixed Components,” to appear in SiliconPV Conference Proceedings, vol. 3
[3] J.-M. Wagner, J. Carstensen, and R. Adelung, “Fundamental Aspects Concerning the Validity of the Standard Equivalent Circuit for Large‐Area Silicon Solar Cells,” Phys. Sta-tus Solidi A, vol. 217, no. 2, Art. no. 1900612, Jan. 2020, doi: https://doi.org/10.1002/pssa.201900612
[4] J.-M. Wagner, J. Carstensen, and R. Adelung, “On the General Current Dependence of the Distributed Series Resistance of Solar Cells: The Influence of the Base Resistivity,” SiliconPV Conference Proceedings, vol. 1, Art. no. 854, doi: https://doi.org/10.52825/siliconpv.v1i.854
[5] K. C. Fong, K. R. McIntosh, and A. W. Blakers, “Accurate series resistance measure-ment of solar cells,” Prog. Photovoltaics Res. Appl., vol. 21, no. 4, pp. 490–499, Jun. 2013, doi: https://doi.org/10.1002/pip.1216
[6] K. Bothe and D. Hinken, “Quantitative Luminescence Characterization of Crystalline Sili-con Solar Cells,” Semiconductors and Semimetals, vol. 89, pp. 259–339, 2013, doi: https://doi.org/10.1016/B978-0-12-381343-5.00005-7
[7] T. Trupke, E. Pink, R. A. Bardos, and M. D. Abbott, “Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging,” Appl. Phys. Lett., vol. 90, Art. no. 093506, Feb. 2007, doi: https://doi.org/10.1063/1.2709630
[8] K. Ramspeck, K. Bothe, D. Hinken, B. Fischer, J. Schmidt, and R. Brendel, “Recombina-tion current and series resistance imaging of solar cells by combined luminescence and lock-in thermography,” Appl. Phys. Lett., vol. 90, Art. no. 153502, Apr. 2007, doi: https://doi.org/10.1063/1.2721138
[9] A. Schütt, J. Carstensen, and H. Föll, “Quantitative analy[s]is of local serial resistance and diode losses using the CELLO technique,” Proc. 21st European Photovoltaic Solar Energy Conf., Dresden, Germany, 2006, pp. 404–407, doi: N/A
[10] J.-M. Wagner, K. Upadhyayula, J. Carstensen, and R. Adelung, “A critical review and discussion of different methods to determine the series resistance of solar cells: Rs,dark vs. Rs,light?,” AIP Conf. Proc., vol. 1999, Art. no. 020022, Aug. 2018, doi: https://doi.org/10.1063/1.5049261
[11] J. E. Mahan and G. M. Smirnov, “A new perspective on distributed series resistance ef-fects in photovoltaic devices,” in Conf. Rec. 14th IEEE Photovoltaic Specialists Conf., Jan. 1980, pp. 612–618, doi: N/A
[12] M. Wolf and H. Rauschenbach, “Series resistance effects on solar cell measurements,” Advanced Energy Conversion, vol. 3, no. 2, pp. 455–479, Apr.–Jun. 1963, doi: https://doi.org/10.1016/0365-1789(63)90063-8
[13] P. P. Altermatt, G. Heiser, A. G. Aberle, A. Wang, J. Zhao, S. J. Robinson, S. Bowden, and M. A. Green, “Spatially resolved analysis and minimization of resistive losses in high-efficiency Si solar cells,” Prog. Photovoltaics Res. Appl., vol. 4, no. 6, pp. 399–414, Nov./Dec. 1996, doi: https://doi.org/10.1002/(SICI)1099-159X(199611/12)4:6%3C399::AID-PIP148%3E3.0.CO;2-4
[14] M. Turek, “Current and illumination dependent series resistance of solar cells,” J. Appl. Phys., vol. 115, no. 14, Art. no. 144503, Apr. 2014, doi: https://doi.org/10.1063/1.4871017
[15] D. Pysch, A. Mette, and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells,” Sol. Energy Mater. Sol. Cells, vol. 91, no. 18, pp. 1698–1706, Nov. 2007, doi: https://doi.org/10.1016/j.solmat.2007.05.026
[16] J.-M. Wagner, A. Schütt, J. Carstensen, and R. Adelung, “Linear-response description of the series resistance of large-area silicon solar cells: Resolving the difference between dark and illuminated behavior,” Energy Procedia, vol. 92, pp. 255–264, Aug. 2016, doi: https://doi.org/10.1016/j.egypro.2016.07.072
[17] J.-M. Wagner, K. Upadhyayula, J. Carstensen, R. Adelung, “Averaging the unaveragea-ble: Defining a meaningful local series resistance for large-area silicon solar cells,” AIP Conf. Proc., vol. 2147, Art. No. 020019, Aug. 2019, doi: https://doi.org/10.1063/1.5123824
[18] D. Lan and M. Green, “Generalised distributed model of a solar cell: Lateral injection ef-fects and impact on cell design and characterisation,” Sol. Energy Mater. Sol. Cells, vol. 147, pp 108–114, Apr. 2016, doi: https://doi.org/10.1016/j.solmat.2015.12.005
[19] J.-M. Wagner, J. Carstensen, and R. Adelung, “Injection Dependence of the Local Series Resistance: Extending the Illumination Intensity Variation Method,” AIP Conf. Proc., vol. 2487, Art. no. 030013, Aug. 2022, doi: https://doi.org/10.1063/5.0089259
[20] J. J. Wysocki, “The Effect of Series Resistance on Photovoltaic Solar Energy Conver-sion,” RCA Rev., vol. 22, pp 57–70, Mar. 1961, doi: N/A
[21] S. R. Dhariwal, S. Mittal, and R. K. Mathur, “Theory for voltage dependent series re-sistance in silicon solar cells,” Solid-State Electronics, vol. 27, no. 3, pp. 267–273, Mar. 1984, doi: https://doi.org/10.1016/0038-1101(84)90123-0
[22] J. Carstensen, A. Schütt, and H. Föll, “CELLO local solar cell resistance maps: Modeling of data and correlation to solar cell efficiency,” Proc. 22nd European Photovoltaic Solar Energy Conf., Milan, Italy, 2007, pp. 337–340, doi: N/A
[23] U. Rau, P. O. Grabitz, and J. H. Werner, “Resistive limitations to spatially inhomogeneous electronic losses in solar cells,” Appl. Phys. Lett., vol. 85, no. 24, pp. 6010–6012, Dec. 2004, doi: https://doi.org/10.1063/1.1835536
[24] V. G. Karpov, G. Rich, A. V. Subashiev, and G. Dorer, “Shunt screening, size effects and I/V analysis in thin-film photovoltaics,” J. Appl. Phys., vol. 89, no. 9, pp. 4975–4985, May 2001, doi: https://doi.org/10.1063/1.1359158
[25] V. G. Karpov, A. D. Compaan, and D. Shvydka, “Random diode arrays and mesoscale physics of large-area semiconductor devices,” Phys. Rev. B, vol. 69, no. 4, Art. No. 045325, Jan. 2004, doi: https://doi.org/10.1103/PhysRevB.69.045325
[26] O. Breitenstein and S. Rißland, “A two-diode model regarding the distributed series re-sistance,” Sol. Energy Mater. Sol. Cells, vol. 110, pp. 77–86, Mar. 2013, doi: https://doi.org/10.1016/j.solmat.2012.11.021
[27] O. Breitenstein, J. Bauer, D. Hinken, and K. Bothe, “The reliability of thermography- and luminescence-based series resistance and saturation current density imaging,” Sol. Ener-gy Mater. Sol. Cells, vol. 137, pp. 50–60, Jun. 2015, doi: https://doi.org/10.1016/j.solmat.2015.01.017
[28] G. Dost, H. Höffler, and J. M. Greulich, “Advanced Series Resistance Imaging for Silicon Solar Cells via Electroluminescence,” Phys. Status Solidi A, vol. 218, no. 6, Art. no. 2000546, Mar. 2021, doi: https://doi.org/10.1002/pssa.202000546
Downloads
Additional Files
Published
Versions
- 2025-12-16 (2)
- 2025-12-12 (1)
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Jan-Martin Wagner, Jürgen Carstensen

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-09-04
Published 2025-12-16