Tracking Hydrogen During Poly-Si/SiOx Contact Fabrication: An Infrared Spectroscopy Analysis of Si–H Bonds Configurations

Authors

DOI:

https://doi.org/10.52825/siliconpv.v1i.847

Keywords:

Silicon Solar Cells, Poly-Silicon, Hydrogen, TOPCon, FTIR

Abstract

The hydrogenation step contributing to the high efficiencies (>25%) reached with poly-Si/SiOx passivated contacts solar cells is still poorly understood. In this study, Fourier transform infrared spectroscopy (FTIR) is used to follow the different bonding configurations of H during the fabrication process. The carrier lifetime degradation upon annealing is correlated to an important loss of Si–H bonds, from both the a­‑Si:H film and the SiOx interfaces. The subsequent hydrogenation step results in the formation of a small number of Si–H bonds near the crystalline silicon c-Si/SiOx interface, associated with the low stretching mode (LSM) and correlated to a significant lifetime improvement. These bonds feature a preferential orientation, as shown by polarized measurements.

Downloads

Download data is not yet available.

References

A. Richter et al., “Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses,” Nat Energy, vol. 6, no. 4, Art. no. 4, pp. 429–438, Apr. 2021, doi: 10.1038/s41560-021-00805-w.

C. Hollemann, F. Haase, S. Schäfer, J. Krügener, R. Brendel, and R. Peibst, “26.1%-efficient POLO-IBC cells: Quantification of electrical and optical loss mechanisms,” Prog. Photovolt: Res and Appl., vol. 27, no. 11, pp. 950–958, 2019, doi: 10.1002/pip.3098.

“JinkoSolar’s High-efficiency N-Type Monocrystalline Silicon Solar Cell Sets Our New Record with Maximum Conversion Efficiency of 26.4% | JinkoSolar.” https://ir.jinkosolar.com/news-releases/news-release-details/jinkosolars-high-efficiency-n-type-monocrystalline-silicon-2 (accessed Mar. 15, 2023).

R. Chen et al., “24.58% efficient commercial n-type silicon solar cells with hydrogenation.” Prog. Photovolt: Res Appl., vol. 29, no. 11, pp. 1213–1218, Nov. 2021, doi: 10.1002/pip.3464.

D. Chen et al., “Hydrogen induced degradation: A possible mechanism for light- and elevated temperature- induced degradation in n-type silicon,” Sol. Energy Mater. Sol. Cells, vol. 185, pp. 174–182, Oct. 2018, doi: 10.1016/j.solmat.2018.05.034.

D. Kang et al., “Optimum Hydrogen Injection in Phosphorus-Doped Polysilicon Passivating Contacts,” ACS Appl. Mater. Interfaces, vol. 13, no. 46, pp. 55164–55171, Nov. 2021, doi: 10.1021/acsami.1c17342.

H. Fujiwara and M. Kondo, “Real-time monitoring and process control in amorphous∕crystalline silicon heterojunction solar cells by spectroscopic ellipsometry and infrared spectroscopy,” Appl. Phys. Lett., vol. 86, no. 3, p. 032112, Jan. 2005, doi: 10.1063/1.1850612.

Y. Zhao et al., “Effects of (i)a-Si:H deposition temperature on high-efficiency silicon heterojunction solar cells,” Prog. Photovolt: Res Appl., Sept. 2022, 1-11 doi: 10.1002/pip.3620.

A. Soman and A. Antony, “A critical study on different hydrogen plasma treatment methods of a-Si: H/c-Si interface for enhanced defect passivation,” Appl. Surf. Sci., vol. 553, p. 149551, Jul. 2021, doi: 10.1016/j.apsusc.2021.149551.

T. N. Truong et al., “Hydrogen-Assisted Defect Engineering of Doped Poly-Si Films for Passivating Contact Solar Cells,” ACS Appl. Energy Materials, vol. 2, no. 12, pp. 8783–8791, 2019, doi: 10.1021/acsaem.9b01771.

W. Chen et al., “Influence of PECVD deposition temperature on phosphorus doped poly-silicon passivating contacts,” Sol. Energy Mater. Sol. Cells, vol. 206, p. 110348, Mar. 2020, doi: 10.1016/j.solmat.2019.110348.

M. Lehmann et al., “Analysis of hydrogen distribution and migration in fired passivating contacts (FPC),” Sol. Energy Mater. Sol. Cells, vol. 200, p. 110018, Sep. 2019, doi: 10.1016/j.solmat.2019.110018.

H. Ogawa, K. Ishikawa, C. Inomata, and S. Fujimura, “Initial stage of native oxide growth on hydrogen terminated silicon (111) surfaces,” J Appl. Phys., vol. 79, no. 1, pp. 472–477, Jan. 1996, doi: 10.1063/1.360853.

G. Lucovsky and W. B. Pollard, “Local bonding of oxygen and hydrogen in a‐Si:H:O thin films,” J. Vac Sci. Tech. A, vol. 1, no. 2, pp. 313–316, Apr. 1983, doi: 10.1116/1.572121.

D. Rouchon, N. Rochat, F. Gustavo, A. Chabli, O. Renault, and P. Besson, “Study of ultrathin silicon oxide films by FTIR-ATR and ARXPS after wet chemical cleaning processes,” Surf. Interf. Analysis, vol 34, no. 1, pp. 445–450, 2002, doi: 10.1002/sia.1335.

A. H. M. Smets, T. Matsui, M. Kondo, and M. C. M. van de Sanden, “The hydride stretching modes of hydrogenated vacancies in amorphous and nanocrystalline silicon: A helpful tool for material characterization,” in 2009 34th IEEE Photovoltaic Spe-cialists Conference (PVSC), Jun. 2009, pp.721–724. doi: 10.1109/PVSC.2009.5411182.

M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B, vol. 16, no. 8, pp. 3556–3571, Oct. 1977, doi: 10.1103/PhysRevB.16.3556.

A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, “Vacancies and voids in hydrogenated amorphous silicon,” Appl. Phys. Lett., vol. 82, no. 10, Art. no. 10, Mar. 2003, doi: 10.1063/1.1559657.

M. Niwano, J. Kageyama, K. Kurita, K. Kinashi, I. Takahashi, and N. Miyamoto, “Infrared spectroscopy study of initial stages of oxidation of hydrogen‐terminated Si surfaces stored in air,” J. Appl. Phys., vol. 76, no. 4, pp. 2157–2163, Aug. 1994, doi: 10.1063/1.357627.

A. C. Bronneberg, A. H. M. Smets, M. Creatore, and M. C. M. van de Sanden, “On the oxidation mechanism of microcrystalline silicon thin films studied by Fourier transform infrared spectroscopy,” J. Non. Cryst. Solids, vol. 357, no. 3, pp. 884–887, Feb. 2011, doi: 10.1016/j.jnoncrysol.2010.11.001.

G. Amato, G. Della Mea, F. Fizzotti, C. Manfredotti, R. Marchisio, and A. Paccagnella, “Hydrogen bonding in amorphous silicon with use of the low-pressure chemical-vapor-deposition technique,” Phys. Rev. B, vol. 43, no. 8, pp. 6627–6632, Mar. 1991, doi: 10.1103/PhysRevB.43.6627.

A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, “Infrared ab-sorption strength and hydrogen content of hydrogenated amorphous silicon,” Phys. Rev. B, vol. 45, no. 23, pp. 13367–13377, Jun. 1992, doi: 10.1103/PhysRevB.45.13367.

S. Choi et al., “Structural evolution of tunneling oxide passivating contact upon thermal annealing,” Sci Rep, vol. 7, no. 1, Art. no. 1, Oct. 2017, doi: 10.1038/s41598-017-13180-y.

J. D. Webb et al., “Anisotropy in Hydrogenated Amorphous Silicon Films as Observed Using Polarized Ftir-Atr Spectroscopy,” MRS Online Proceedings Library (OPL), vol. 557, p. 311, ed 1999, doi: 10.1557/PROC-557-311.

Downloads

Published

2024-02-22

How to Cite

Bocquet, V., Cabal, R., Albaric, M., Rochat, N., Ramos, R., Barnes, J.-P., & Dubois, S. (2024). Tracking Hydrogen During Poly-Si/SiOx Contact Fabrication: An Infrared Spectroscopy Analysis of Si–H Bonds Configurations. SiliconPV Conference Proceedings, 1. https://doi.org/10.52825/siliconpv.v1i.847

Conference Proceedings Volume

Section

Cell Characterization and Simulations