Characterization of a Novel Coating Process to Darken Sand Particles

Authors

DOI:

https://doi.org/10.52825/solarpaces.v3i.2294

Keywords:

Darken Particles, Sand, Characterization of Particles

Abstract

The use of solid particles in Concentrated Solar Power (CSP) plants can enhance energy conversion efficiency by elevating the working temperature. For this reason, many researchers are exploring various materials such as silica sand and SiC, among others, and methods to enhance the optical properties while cost is reduced. In this context, this study proposes a novel fabrication method based on the Mn2+ diffusion to darken silica sand particles and, therefore, enhancing their absorptivity. Colorimetry analysis reveals that the obtained particles color closely resembles that of the reference material SiC, while morphology analysis, Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD) confirm an effective fabrication method.

Downloads

Download data is not yet available.

References

J. Treiterer, and J. Myers, "The hysteresis phenomenon in traffic flow", Transportation and traffic theory, vol. 6, pp. 13–38, 1974.

B. Coifman, L. Li, and W. Xiao, "Resurrecting the Lost Vehicle Trajectories of Treiterer and Myers with New Insights into a Controversial Hysteresis", Transportation Research Record, vol. 2672, no. 20, pp. 25-38, 2018. doi:10.1177/0361198118786473.

V. Alexiadis, J. Colyar, J. Halkias, R. Hranac, and G. McHale, "The Next Generation Simulation Program", ITE Journal, vol. 74, no. 8, pp. 22 - 26, 2004.

E. Barmpounakis, and N. Geroliminis, "On the new era of urban traffic monitoring with massive drone data: The pNEUMA large-scale field experiment", Transportation Research Part C: Emerging Technologies, vol. 111, pp. 50-71, 2020. doi:10.1016/j.trc.2019.11.023.

D. Gloudemans et al., "I-24 MOTION: An instrument for freeway traffic science", Transportation Research Part C: Emerging Technologies, vol. 155, p. 104311, 2023. doi:10.1016/j.trc.2023.104311.

A. Kutsch, M. Margreiter, and K. Bogenberger, "TUMDOT-MUC: Data Collection and Processing of Multimodal Trajectories Collected by Aerial Drones", Data Science for Transportation, vol. 6, no. 2, p. 15, 2024. doi:10.1007/s42421-024-00101-5.

M. Berghaus, S. Lamberty, J. Ehlers, E. Kalló, and M. Oeser, "Vehicle trajectory dataset from drone videos including off-ramp and congested traffic – Analysis of data quality, traffic flow, and accident risk", Communications in Transportation Research, vol. 4, p. 100133, 2024. doi:10.1016/j.commtr.2024.100133.

C. Schicktanz et al., "DLR Urban Traffic dataset (DLR UT)", Zenodo, 2025. doi:10.5281/zenodo.14773161.

P. Alvarez Lopez et al., "Simulation of Urban Mobility (SUMO) (Version 1.22.0)", Feb. 2025. [Online]. Available: https://elib.dlr.de/212503/.

P.A. Lopez et al., "Microscopic Traffic Simulation using SUMO", in The 21st IEEE International Conference on Intelligent Transportation Systems, IEEE, 2018. [Online]. Available: https://elib.dlr.de/124092/.

Institute of Transportation Systems of DLR, "‘Research Intersection’ – a hub for data collection in the field" Accessed: Apr. 1, 2025. [Online]. Available: https://www.dlr.de/en/ts/research-transfer/research-infrastructure/test-areas/acquisition-technology/research-intersection.

VVM, "VVM - Verification Validation Methods" Accessed: Mar. 7, 2025. [Online]. Available: https://www.vvm-projekt.de/en/project.

KoFeMo, "Kombinierte Untersuchung von Feinstaub und Mobilität – KoFeMo" Accessed: Mar. 7, 2025. [Online]. Available: https://bmdv.bund.de/SharedDocs/DE/Artikel/DG/mfund-projekte/kofemo.html.

Downloads

Published

2025-08-27

How to Cite

Cerutti Cristaldo, L. M., Díaz Heras, M., Pérez Flores, J. C., Canales Vázquez, J., & Almendros Ibáñez, J. A. (2025). Characterization of a Novel Coating Process to Darken Sand Particles. SolarPACES Conference Proceedings, 3. https://doi.org/10.52825/solarpaces.v3i.2294

Conference Proceedings Volume

Section

Thermal Energy Storage Materials, Media, and Systems
Received 2024-08-21
Accepted 2025-05-26
Published 2025-08-27

Funding data