Multicriteria Comparison of two Different-Nature Fillers for High Temperature Sensible Heat Storage
DOI:
https://doi.org/10.52825/solarpaces.v3i.2309Keywords:
Thermal Energy Storage, Packed-Bed, Materials, Thermal PropertiesAbstract
The most suitable materials for thermal energy storage should combine low cost, high thermal capacity, high charging and discharging velocities, compatibility with the plant components in which they are integrated and, long-term durability. The use of solids to fill packed beds where the heat enters and leaves through a heat transfer fluid (HTF), is a solution that provides satisfactory amounts of energy density at low cost. In this work, two solid materials of different nature were comparatively tested at device level with air as HTF and according to various criteria. Material A is manufactured from recycled waste and tailored to improve its thermal properties, while material B is a natural, cheap and highly available in nature (pebbles). Material B showed significant mechanical strength problems at temperatures above 500 °C. Material A, instead, withstood well temperatures up to 850 °C under operating conditions. The comparative KPI revealed that material B has a slightly higher thermal capacity and a 4% higher energy efficiency than material A. However, these results lost validity after the first-round experiment with material B, since a strong degradation was detected affecting its physical properties and hindering its ability to store heat.
Downloads
References
[1] U.Herrmann, B. Kelly, H. Price, “Two-tank molten salt storage for parabolic trough solar power plants”,Energy. 29(2004)883–893.https://doi.org/10.1016/S0360-5442(03)00193-2
[2] A. Meier, C. Winkler, D. Wuillemin, “Experiment for modelling high temperature rock bed storage”, Sol. Energy Mater. 24 (1991) 255–264. https://doi.org/10.1016/0165-1633(91)90066-T.
[3] G. Zanganeh, A. Pedretti, S. Zavattoni, M. Barbato, A. Steinfeld, “Packed-bed thermal storage for concentrated solar power - Pilot-scale demonstration and industrial-scale de-sign”, Sol. Energy. 86 (2012) 3084–3098. https://doi.org/10.1016/j.solener.2012.07.019.
[4] A. Palacios, C. Barreneche, M.E. Navarro, Y. Ding, “Thermal energy storage technolo-gies for concentrated solar power – A review from a materials perspective”, Renew. En-ergy. 156 (2020) 1244–1265. https://doi.org/10.1016/j.renene.2019.10.127.
[5] A.C. Iniesta, M. Diago, T. Delclos, Q. Falcoz, T. Shamim, N. Calvet, “Gravity-fed Com-bined Solar Receiver/Storage System Using Sand Particles as Heat Collector, Heat Transfer and Thermal Energy Storage Media”, Energy Procedia. 69 (2015) 802–811. https://doi.org/10.1016/j.egypro.2015.03.089.
[6] Y. Jemmal, N. Zari, M. Asbik, M. Maaroufi, “Experimental characterization and thermal performance comparison of six Moroccan rocks used as filler materials in a packed bed storage system”, J. Energy Storage. 30 (2020). https://doi.org/10.1016/j.est.2020.101513.
[7] M. Diago, A.C. Iniesta, T. Delclos, T. Shamim, N. Calvet, “Characterization of Desert Sand for its Feasible use as Thermal Energy Storage Medium”, Energy Procedia. 75 (2015) 2113–2118. https://doi.org/10.1016/j.egypro.2015.07.333.
[8] P. Klein, T.H. Roos, T.J. Sheer, “Experimental Investigation into a Packed Bed Thermal Storage Solution for Solar Gas Turbine Systems”, Energy Procedia. 49 (2014) 840–849. https://doi.org/10.1016/j.egypro.2014.03.091.
[9] A. Gautam, R.P. Saini, “A review on sensible heat based packed bed solar thermal ener-gy storage system for low temperature applications”, Sol. Energy. 207 (2020) 937–956. https://doi.org/10.1016/j.solener.2020.07.027.
[10] A. Gutierrez, L. Miró, A. Gil, J. Rodríguez-Aseguinolaza, C. Barreneche, N. Calvet, X. Py, A. Inés Fernández, M. Grágeda, S. Ushak, L.F. Cabeza, “Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials”, Renew. Sustain. Energy Rev. 59 (2016) 763–783. https://doi.org/10.1016/j.rser.2015.12.071.
[11] https://seramic.eco/materials/
[12] E. Alonso, E. Rojas, “Experimental and numerical study of an air solid thermocline ther-mal energy storage system operating at high temperature”. AIP Conf. Proc. 2815, 160003 (2023) https://doi.org/10.1063/5.0148564
[13] E. Alonso, E. Rojas, “A simple method to determine the thermal capacity of fillers for sensible thermal storage under operating conditions”. AIP Conf. Proc. 2445, 160001 (2022) https://doi.org/10.1063/5.0087655
[14] E. Alonso, E. Rojas, “Air solid packed-beds for high temperature thermal storage: practi-cal recommendations for predicting their thermal behavior”. Appl. Energy. Eng. 202 (2022) 117835. https://doi.org/10.1016/j.applthermaleng.2021.117835.
[15] S.A. Zavattoni, M.C. Barbato, A. Pedretti, G. Zanganeh, A. Steinfeld, “High temperature rock-bed TES system suitable for industrial-scale CSP plant - CFD analysis under charge/discharge cyclic conditions”, Energy Procedia. 46 (2014) 124–133. https://doi.org/10.1016/j.egypro.2014.01.165.
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Elisa Alonso Romero, Esther Rojas, Antonio Ávila-Marín, Margarita Rodriguez, Rocío Bayón

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-04-29
Published 2025-11-25