Design of an Air-Fed PTC Solar Field Integrated With a Rock Bed-Based Thermal Energy Storage System

Authors

DOI:

https://doi.org/10.52825/solarpaces.v3i.2318

Keywords:

Solar Energy, Parabolic Trough Collector, Industrial Process Heat, Drying, Rock Bed

Abstract

Integrating solar energy to provide heat for industrial processes represents a viable solution aligned with the ongoing energy transition. Parabolic trough collectors (PTCs) are a reliable and mature technology within this context. This study addresses the performance of an industrial air-drying plant integrated with a PTC solar field and a thermal energy storage (TES) system comprising two rock beds operating in parallel. To improve the exploitation of solar radiation, pressurized air was used as the heat transfer fluid for the PTC due to its high temperature limits. A parametric analysis was conducted to evaluate the impact of solar field size on performance, varying both the number of modules in series per string and the number of parallel strings. Results show that the solar fraction (SF) increases with the number of parallel strings, while increasing the number of series modules initially raises the SF to a peak before slightly decreasing. The maximum SF achieved was 85% with a TES volume of 96.24 m³ and a solar field comprising 12 modules in series and 4 parallel strings, resulting in a total collection area of 3450 m².

Downloads

Download data is not yet available.

References

A. Manasrah, M. Masoud, Y. Jaradat, and P. Bevilacqua, “Investigation of a Real-Time Dynamic Model for a PV Cooling System,” Energies, vol. 15, no. 5, p. 1836, Mar. 2022, doi: 10.3390/en15051836.

R. Bruno, N. Arcuri, and C. Carpino, “The Passive House in Mediterranean Area: Para-metric Analysis and Dynamic Simulation of the Thermal Behaviour of an Innovative Pro-totype,” Energy Procedia, vol. 82, pp. 533–539, Dec. 2015, doi: 10.1016/j.egypro.2015.11.866.

A. Ahmad, O. Prakash, R. Kausher, G. Kumar, S. Pandey, and S. M. M. Hasnain, “Par-abolic trough solar collectors: A sustainable and efficient energy source,” Materials Sci-ence for Energy Technologies, vol. 7, pp. 99–106, 2024, doi: 10.1016/j.mset.2023.08.002.

R. Bruno, P. Bevilacqua, L. Longo, and N. Arcuri, “Small Size Single-axis PV Trackers: Control Strategies and System Layout for Energy Optimization,” Energy Procedia, vol. 82, pp. 737–743, Dec. 2015, doi: 10.1016/j.egypro.2015.11.802.

X. Wei, Y. Yin, B. Qin, W. Wang, J. Ding, and J. Lu, “Preparation and enhanced thermal conductivity of molten salt nanofluids with nearly unaltered viscosity,” Renewable Ener-gy, vol. 145, pp. 2435–2444, Jan. 2020, doi: 10.1016/j.renene.2019.04.153.

Y. Krishna, M. Faizal, R. Saidur, K. C. Ng, and N. Aslfattahi, “State-of-the-art heat trans-fer fluids for parabolic trough collector,” International Journal of Heat and Mass Transfer, vol. 152, p. 119541, May 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119541.

E. Bellos, C. Tzivanidis, I. Daniil, and K. A. Antonopoulos, “The impact of internal longitu-dinal fins in parabolic trough collectors operating with gases,” Energy Conversion and Management, vol. 135, pp. 35–54, Mar. 2017, doi: 10.1016/j.enconman.2016.12.057.

R. Silva, F. J. Cabrera, and M. Pérez-García, “Process Heat Generation with Parabolic Trough Collectors for a Vegetables Preservation Industry in Southern Spain,” Energy Procedia, vol. 48, pp. 1210–1216, 2014, doi: 10.1016/j.egypro.2014.02.137.

G. Ferruzzi et al., “Concentrating Solar Power: The State of the Art, Research Gaps and Future Perspectives,” Energies, vol. 16, no. 24, p. 8082, Dec. 2023, doi: 10.3390/en16248082.

T. Akba, D. Baker, and A. G. Yazıcıoğlu, “Modeling, transient simulations and parametric studies of parabolic trough collectors with thermal energy storage,” Solar Energy, vol. 199, pp. 497–509, Mar. 2020, doi: 10.1016/j.solener.2020.01.079.

S. A. Kalogirou, “Parabolic trough collectors for industrial process heat in Cyprus,” 2002.

R. Silva, M. Berenguel, M. Pérez, and A. Fernández-Garcia, “Thermo-economic design optimization of parabolic trough solar plants for industrial process heat applications with memetic algorithms,” Applied Energy, vol. 113, pp. 603–614, Jan. 2014, doi: 10.1016/j.apenergy.2013.08.017.

F. Ben Othman et al., “Investigation of olive mill sludge treatment using a parabolic trough solar collector,” Solar Energy, vol. 232, pp. 344–361, Jan. 2022, doi: 10.1016/j.solener.2022.01.008.

H. Benoit, L. Spreafico, D. Gauthier, and G. Flamant, “Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 298–315, Mar. 2016, doi: 10.1016/j.rser.2015.10.059.

H. Agalit, N. Zari, M. Maalmi, and M. Maaroufi, “Numerical investigations of high tem-perature packed bed TES systems used in hybrid solar tower power plants,” Solar Ener-gy, vol. 122, pp. 603–616, Dec. 2015, doi: 10.1016/j.solener.2015.09.032.

Trnsys 18 Manual, Mathematical reference, Solar Energy Laboratory. University of Wis-consin, Madison.

M. Halimi, I. Outana, A. El Amrani, J. Diouri, and C. Messaoudi, “Prediction of captured solar energy for different orientations and tracking modes of a PTC system: Technical feasibility study (Case study: South eastern of MOROCCO),” Energy Conversion and Management, vol. 167, pp. 21–36, Jul. 2018, doi: 10.1016/j.enconman.2018.04.051.

Y. Marif, H. Benmoussa, H. Bouguettaia, M. M. Belhadj, and M. Zerrouki, “Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region,” Energy Conversion and Management, vol. 85, pp. 521–529, Sep. 2014, doi: 10.1016/j.enconman.2014.06.002.

L. Brunetti et al., “Energy consumption and analysis of industrial drying plants for fresh pasta process,” Journal of Agricultural Engineering, vol. 46, Jul. 2015, doi: 10.4081/jae.2015.478.

L. Ozgener and O. Ozgener, “Exergy analysis of industrial pasta drying process,” Int. J. Energy Res., vol. 30, no. 15, pp. 1323–1335, Dec. 2006, doi: 10.1002/er.1227.

T. Baumann and S. Zunft, “Properties of granular materials as heat transfer and storage medium in CSP application,” Solar Energy Materials and Solar Cells, vol. 143, pp. 38–47, Dec. 2015, doi: 10.1016/j.solmat.2015.06.037.

R. Tiskatine et al., “Suitability and characteristics of rocks for sensible heat storage in CSP plants,” Solar Energy Materials and Solar Cells, vol. 169, pp. 245–257, Sep. 2017, doi: 10.1016/j.solmat.2017.05.033.

X. Daguenet-Frick, A. Toutant, F. Bataille, and G. Olalde, “Numerical investigation of a ceramic high-temperature pressurized-air solar receiver,” Solar Energy, vol. 90, pp. 164–178, Apr. 2013, doi: 10.1016/j.solener.2013.01.006.

V. Gnielinski, “On heat transfer in tubes,” International Journal of Heat and Mass Trans-fer, vol. 63, pp. 134–140, Aug. 2013, doi: 10.1016/j.ijheatmasstransfer.2013.04.015.

A. Boubault, C. K. Ho, A. Hall, T. N. Lambert, and A. Ambrosini, “Levelized cost of ener-gy (LCOE) metric to characterize solar absorber coatings for the CSP industry,” Renew-able Energy, vol. 85, pp. 472–483, Jan. 2016, doi: 10.1016/j.renene.2015.06.059.

System Advisor Model 2022.11.29 (SAM 2022.11.21). National Renewable Energy La-boratory, Golden, CO. Accessed: Apr. 01, 2024. [Online]. Available: https://https://sam.nrel.gov

N. Arcuri, R. Bruno, and P. Bevilacqua, “Influence of the optical and geometrical proper-ties of indoor environments for the thermal performances of chilled ceilings,” Energy and Buildings, vol. 88, pp. 229–237, Feb. 2015, doi: 10.1016/j.enbuild.2014.12.009.

S. Khare, M. Dell’Amico, C. Knight, and S. McGarry, “Selection of materials for high temperature sensible energy storage,” Solar Energy Materials and Solar Cells, vol. 115, pp. 114–122, Aug. 2013, doi: 10.1016/j.solmat.2013.03.009.

Downloads

Published

2025-09-17

How to Cite

Cristaudo, A., Nicoletti, F., Rovense, F., Gaggioli, W., Ferraro, V., & Arcuri, N. (2025). Design of an Air-Fed PTC Solar Field Integrated With a Rock Bed-Based Thermal Energy Storage System. SolarPACES Conference Proceedings, 3. https://doi.org/10.52825/solarpaces.v3i.2318

Conference Proceedings Volume

Section

Solar Industrial Process Heat and Thermal Desalination
Received 2024-08-30
Accepted 2025-05-05
Published 2025-09-17

Funding data