Thermal Wave Flow Meter for Molten Salts Flow Measurements

Authors

DOI:

https://doi.org/10.52825/solarpaces.v3i.2320

Keywords:

Molten Salt, Thermal Wave, Time-of-Flight , Flow Measurement

Abstract

Flow measurements in molten salt are. Flow rate measurement using a thermal wave flow meter is a simple and reliable flow rate measurement not limited only to molten salts. The present study focuses on verifying and analyzing the thermal wave flow meter. Several flow meter settings were tested in order to evaluate flow meter accuracy and reliability. The flow meter was verified on a testing loop with water where an electromagnetic flow meter was used for a reference. First tests showed sensitivity of flow meter on heat pulse length and accuracy of peak location searching for a time delay evaluation.

Downloads

Download data is not yet available.

References

[1] C. W. Forsberg, P. Peterson, P. Pickard, “Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity” Nucl. Technol., vol.144, no. 3, pp. 289–302, Apr 2003, doi: https://doi.org/10.13182/NT03-1

[2] R. Dunn, P. Hearps, M. Wright, “Molten-salt power towers: Newly commercial concen-trating solar storage” Proc. IEEE, vol.200 pp. 504–515, 2012, doi: https://doi.org/10.1109/JPROC.2011.2163739

[3] A. Naserbegi, M. Aghaiee, Z. Nourani, “Optimal design of a concentrated solar power plant with a thermal energy storage system using the downhill simplex method” Appl. Therm. Eng, vol.240, March 2024, doi: https://doi.org/10.1016/j.applthermaleng.2023.122264

[4] H. Zhang, J. Baeyens, J. Degr`eve, G. Cac`eres, “Concentrated solar power plants: Re-view and design methodology” Renewable Sustainable Energy Rev., vol. 22, pp. 466–481, Jun 2013, doi: https://doi.org/10.1016/j.rseer.2013.01.032

[5] T. Bauer, C. Odenthal, A. Bonk, “Molten salt storage for power generation” Chem Ing Tech, vol. 93, no. 4, pp. 534–546, Feb 2021, doi: https://doi.org/10.1002/cite.202000137

[6] T. Ma, Z. Li, K. Lv, D. Chang, W. Hu, Y. Zhou, “Design and performance analysis of deep peak shaving scheme for thermal power units based on high-temperature molten salt heat storage system” Energy, vol. 288, Feb 2024, doi: https://doi.org/10.1016/j.energy.2023.129557

[7] Q. Zhang, J. Dong, H. Chen, F. Feng, G. Xu, X. Wang, T. Liu, “Dynamic characteristics and economic analysis of a coal-fired power plant integrated with molten salt thermal en-ergy storage for improving peaking capacity” Energy, vol. 290, Mar 2024, doi: https://doi.org/10.1016/j.energy.2023.130132

[8] D. Gill, W. Kolb, R. Briggs, “An evaluation of pressure and flow measurement in the mol-ten salt test loop (mstl) system” Report SAND2013-5366, Sandia National Laboratories, Livermore, California, United States, 2013

[9] J. Spacek, “Liquid salt flow measurement technologies” Master’s thesis, Czech Technical University in Prague, Prague, Czech Republic, 2022

[10] M. Pantano, “Investigation of performance of an ultrasonic flow meter for potential mol-ten salt reactor applications” Master’s thesis, Massachusetts Institute of Technology, Cambridge, United States, 2016

[11] O. Arora, B. Lancaster, S. R. Yang, R. Vaghetto, Y. Hassan, “Advanced flow and tem-perature measurements in a forced convection molten salt test loop” Ann. Nucl. Energy, vol. 159, Sep 2021, doi: https://doi.org/10.1016/j.anucene.2021.108269

[12] A. F. Brown, H. Kronberger, “A sensitive recording calorimetric mass flowmeter” J. Sci. Instrum., vol. 24, no. 6, 1947, doi: https://doi.org/10.1088/0950-7671/24/6/305

[13] J. H. Huijsing, A. L. C. van Dorp, P. J. G. Loos, “Thermal mass-flow meter” J. Phys. E: Sci. Instrum., vol. 21, no. 10, 1988, doi: https://doi.org/10.1088/0022-3735/21/10/017

[14] H. Qin, R. Dang, B. Dang, “Research on liquid flow measurement method based on heat transfer method” Water, vol. 15, no. 6, 2023, doi: https://doi.org/10.3390/w15061052

[15] A. B. Bauer, “Direct measurement of velocity by hotwire anemometry” AIAA J., vol. 3, no. 6, Jun 1965, pp. 1189–1191, doi: https://doi.org/10.2514/3.3098

[16] L. J. S. Brandbury, I. P. Castro, “A pulsed-wire technique for velocity measurements in highly turbulent flows” J. Fluid Mech., vol. 49, no. 4, Oct 1971, pp. 657–691, doi: https://doi.org/10.1017/S0022112071002313

[17] A. Al-Salaymeh, J. Jovanović, F. Durst, “Bi-directional flow sensor with a wide dynamic range for medical applications” Med. Eng. Phys., vol. 26, no. 8, Oct 2004, pp. 623–637, doi: https://doi.org/10.1016/j.medengphy.2004.06.002

[18] T. S. Lammerink, F. Dijkstra, Z. Houkes, J. van Kuijk, “Intelligent gas-mixture flow sen-sor” Sens. Actuators, A, vol. 47, no. 1, Mar 1995, pp. 380–384, doi: https://doi.org/10.1016/0924-4247(94)00925-8

[19] A. Rachalski, E. Poleszczyk, M. Zieba, “Use of the thermal wave method for measuring the flow velocity of air and carbon dioxide mixture” Measurement, vol. 47, no. 1, Mar 1995, pp. 380–384, doi: https://doi.org/10.1016/0924-4247(94)00925-8

Downloads

Published

2025-11-19

How to Cite

Škarohlíd, J., Kořínek, T., & Škoda, R. (2025). Thermal Wave Flow Meter for Molten Salts Flow Measurements. SolarPACES Conference Proceedings, 3. https://doi.org/10.52825/solarpaces.v3i.2320

Conference Proceedings Volume

Section

Thermal Energy Storage Materials, Media, and Systems
Received 2024-08-30
Accepted 2025-04-29
Published 2025-11-19

Funding data