Designing an Integrated CSP-SOE System for Hydrogen Production

Authors

DOI:

https://doi.org/10.52825/solarpaces.v3i.2324

Keywords:

Concentrated Solar Power (CSP), Solid Oxide Electrolysis, Green Hydrogen Production

Abstract

This paper presents the design, and simulation of a novel concentrated solar power (CSP) system integration with solid oxide electrolysis (SOE) to generate superheated steam required for efficient hydrogen production. The system comprises of 10 parabolic dish collectors, SiSiC cavity receivers, and a heat exchanger with two components. An evaporator and a superheater collectively achieve a high thermal efficiency of 73%. Computational fluid dynamics (CFD) simulations demonstrated that the SiSiC receiver can maintain an air outlet temperature of 1555K, which is 8% more efficient than a similar design reported in the literature. This would facilitate the generation of superheated steam necessary for the SOE process. A water flow rate of 28.8kg/h directly influences the system's hydrogen production capacity, which reaches 2.56kg/h at optimal conditions. The heat exchanger components were designed using Aspen EDR, while the entire system simulation was conducted using Aspen Plus, demonstrating the system's potential to meet industrial standards for sustainable hydrogen production. This article serves as a good reference in investigating the feasibility of CSP-SOE systems as a promising pathway for large-scale renewable hydrogen production.

Downloads

Download data is not yet available.

References

M. Jefferson, “A global energy assessment,” WIREs Energy and Environment, vol. 5, no. 1, pp. 7–15, Jan. 2016, doi: 10.1002/wene.179.

“IRENA – International Renewable Energy Agency.” Accessed: Aug. 19, 2024. [Online]. Available: https://www.irena.org/

P. Cheekatamarla, “Hydrogen and the Global Energy Transition—Path to Sustainability and Adoption across All Economic Sectors,” Energies (Basel), vol. 17, no. 4, p. 807, Feb. 2024, doi: 10.3390/en17040807.

P. Breeze, “Power System Energy Storage Technologies,” in Power Generation Tech-nologies, Elsevier, 2019, pp. 219–249. doi: 10.1016/B978-0-08-102631-1.00010-9.

Q. Hassan, S. Algburi, A. Z. Sameen, H. M. Salman, and M. Jaszczur, “Green hydrogen: A pathway to a sustainable energy future,” Int J Hydrogen Energy, vol. 50, pp. 310–333, Jan. 2024, doi: 10.1016/j.ijhydene.2023.08.321.

B. S. Zainal et al., “Recent advancement and assessment of green hydrogen production technologies,” Renewable and Sustainable Energy Reviews, vol. 189, p. 113941, Jan. 2024, doi: 10.1016/j.rser.2023.113941.

L. Wang, W. Liu, H. Sun, L. Yang, and L. Huang, “Advancements and Policy Implications of Green Hydrogen Production from Renewable Sources,” Energies (Basel), vol. 17, no. 14, p. 3548, Jul. 2024, doi: 10.3390/en17143548.

W. DONITZ, “High-temperature electrolysis of water vapor?status of development and perspectives for application,” Int J Hydrogen Energy, vol. 10, no. 5, pp. 291–295, 1985, doi: 10.1016/0360-3199(85)90181-8.

Y. Zheng, Z. Chen, and J. Zhang, “Solid Oxide Electrolysis of H2O and CO2 to Produce Hydrogen and Low-Carbon Fuels,” Electrochemical Energy Reviews, vol. 4, no. 3, pp. 508–517, Sep. 2021, doi: 10.1007/s41918-021-00097-4.

T. N. Veziroğlu and S. Şahi˙n, “21st Century’s energy: Hydrogen energy system,” Energy Convers Manag, vol. 49, no. 7, pp. 1820–1831, Jul. 2008, doi: 10.1016/j.enconman.2007.08.015.

A. Mohammadi and M. Mehrpooya, “Thermodynamic and economic analyses of hydro-gen production system using high temperature solid oxide electrolyzer integrated with parabolic trough collector,” J Clean Prod, vol. 212, pp. 713–726, Mar. 2019, doi: 10.1016/j.jclepro.2018.11.261.

J. Sanz-Bermejo, V. Gallardo-Natividad, J. González-Aguilar, and M. Romero, “Coupling of a Solid-oxide Cell Unit and a Linear Fresnel Reflector Field for Grid Management,” Energy Procedia, vol. 57, pp. 706–715, 2014, doi: 10.1016/j.egypro.2014.10.226.

A. A. AlZahrani and I. Dincer, “Design and analysis of a solar tower based integrated sys-tem using high temperature electrolyzer for hydrogen production,” Int J Hydrogen Ener-gy, vol. 41, no. 19, pp. 8042–8056, May 2016, doi: 10.1016/j.ijhydene.2015.12.103.

A. Houaijia, M. Roeb, N. Monnerie, and C. Sattler, “Solar power tower as heat and elec-tricity source for a solid oxide electrolyzer: a case study,” Int J Energy Res, vol. 39, no. 8, pp. 1120–1130, Jun. 2015, doi: 10.1002/er.3316.

A. Mohammadi and M. Mehrpooya, “Techno-economic analysis of hydrogen production by solid oxide electrolyzer coupled with dish collector,” Energy Convers Manag, vol. 173, pp. 167–178, Oct. 2018, doi: 10.1016/j.enconman.2018.07.073.

S. R. Pavlovic and V. P. Stefanovic, “Ray Tracing Study of Optical Characteristics of the Solar Image in the Receiver for a Thermal Solar Parabolic Dish Collector,” Journal of So-lar Energy, vol. 2015, pp. 1–10, Oct. 2015, doi: 10.1155/2015/326536.

“Knovel - MatWeb Composite Material Data Sheets (MDS) - Silicon Carbide, Reaction-Bonded, SiSiC - Knovel.” Accessed: Aug. 15, 2024. [Online]. Available: https://app.knovel.com/kn/resources/kt012UUIC1/kpCMDS0005/html?b-q=sisic&cid=kt012UUIC1&include_synonyms=yes&page=1&q=sisic&rcid=kpCMDS0005&sort_on=default

M. Abid, T. A. H. Ratlamwala, and U. Atikol, “Performance assessment of parabolic dish and parabolic trough solar thermal power plant using nanofluids and molten salts,” Int J Energy Res, vol. 40, no. 4, pp. 550–563, Mar. 2016, doi: 10.1002/er.3479.

H. Weldekidan, V. Strezov, and G. Town, “Performance evaluation of absorber reactors for solar fuel production,” Chem Eng Trans, vol. 61, pp. 1111–1116, 2017, doi: 10.3303/CET1761183.

C. Ophoff, M. Abuseada, N. Ozalp, and D. Moens, “Systematic approach for design op-timization of a 3 kW solar cavity receiver via multiphysics analysis,” Solar Energy, vol. 206, pp. 420–435, Aug. 2020, doi: 10.1016/j.solener.2020.06.021.

V. R. Patil, F. Kiener, A. Grylka, and A. Steinfeld, “Experimental testing of a solar air cavity-receiver with reticulated porous ceramic absorbers for thermal processing at above 1000 °C,” Solar Energy, vol. 214, pp. 72–85, Jan. 2021, doi: 10.1016/j.solener.2020.11.045.

A. S. Kopalakrishnaswami and S. K. Natarajan, “Comparative study of modified conical cavity receiver with other receivers for solar paraboloidal dish collector system,” Envi-ronmental Science and Pollution Research, vol. 29, no. 5, pp. 7548–7558, Jan. 2022, doi: 10.1007/s11356-021-16127-z.

A. Kasaeian, A. Kouravand, M. A. Vaziri Rad, S. Maniee, and F. Pourfayaz, “Cavity re-ceivers in solar dish collectors: A geometric overview,” Renew Energy, vol. 169, pp. 53–79, May 2021, doi: 10.1016/j.renene.2020.12.106.

R. E. Sonntag, C. Borgnakke, and G. J. Van Wylen, Fundamentals of thermodynamics, 5th ed. Wiley, 1998. Accessed: Aug. 18, 2024. [Online]. Available: https://cir.nii.ac.jp/crid/1130282271577271936.bib?lang=en

D. O. Kipp, MatWeb Composite Material Data Sheets (MDS). MatWeb, LLC., 2010. [Online]. Available: https://app.knovel.com/hotlink/toc/id:kpCMDS0005/matweb-composite-material/matweb-composite-material

Inc. ANSYS, “ANSYS Fluent Material Library,” 2024, ANSYS, Inc.: 2024 R1.

K. Suzuki et al., “Thermal and mechanical properties of CeO 2,” Journal of the American Ceramic Society, vol. 102, no. 4, pp. 1994–2008, Apr. 2019, doi: 10.1111/jace.16055.

mol K. C J and mol K. H, “The NBS Tables of Chemical Thermodynamic Properties,” CRC Press, 1982.

D. O. Kipp, MatWeb Ceramics Material Data Sheets (MDS). MatWeb, LLC., 2021. [Online]. Available: https://app.knovel.com/hotlink/toc/id:kpMWCMDS06/matweb-ceramics-material/matweb-ceramics-material

C. Heisel, C. Caliot, T. Chartier, S. Chupin, P. David, and D. Rochais, “Digital design and 3D printing of innovative SiC architectures for high temperature volumetric solar receiv-ers,” Solar Energy Materials and Solar Cells, vol. 232, p. 111336, Oct. 2021, doi: 10.1016/j.solmat.2021.111336.

M. Cagnoli, L. Savoldi, R. Zanino, and F. Zaversky, “Numerical evaluation of an innova-tive cup layout for open volumetric solar air receivers,” 2016, p. 030007. doi: 10.1063/1.4949059.

National Institute of Standards and Technology (NIST), “REFPROP (Reference Fluid Thermodynamic and Transport Properties),” 2018, National Institute of Standards and Technology: 10.0.

G. D. Raithby and E. H. Chui, “A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media,” J Heat Transfer, vol. 112, no. 2, pp. 415–423, May 1990, doi: 10.1115/1.2910394.

E. H. Chui and G. D. Raithby, “COMPUTATION OF RADIANT HEAT TRANSFER ON A NONORTHOGONAL MESH USING THE FINITE-VOLUME METHOD,” Numerical Heat Transfer, Part B: Fundamentals, vol. 23, no. 3, pp. 269–288, Apr. 1993, doi: 10.1080/10407799308914901.

Downloads

Published

2025-08-27

How to Cite

Alrwili, A. A., Ibrahim, K. A., King, P., Aldubayyan, A. A., Alshammari, Y. L. A., & Luo, Z. (2025). Designing an Integrated CSP-SOE System for Hydrogen Production. SolarPACES Conference Proceedings, 3. https://doi.org/10.52825/solarpaces.v3i.2324
Received 2024-08-30
Accepted 2025-04-01
Published 2025-08-27

Funding data