System-Level Assessment of Green Hydrogen Production via SOEC-Solar Thermal Integration

Authors

DOI:

https://doi.org/10.52825/solarpaces.v3i.2344

Keywords:

Green Hydrogen, Concentrated Solar Power, Electrolyzers, Solar Energy

Abstract

This study investigates the integration of third-generation (Gen3) Concentrated Solar Power (CSP) systems with Solid Oxide Electrolysis Cells (SOEC) for green hydrogen (gH2) production in the Atacama Desert, Chile. A 100 MW CSP plant coupled with SOEC systems of varying capacities is modeled to optimize hydrogen production using thermal storage particles at 780°C. The analysis focuses on the techno-economic performance, highlighting the importance of Thermal Energy Storage (TES) capacity.
Results indicate that optimal gH2 production occurs with around 10 hours of TES, beyond which additional storage offers minimal benefits. The findings demonstrate that asymmetrical capacity integration between CSP and SOEC systems is economically advantageous, particularly when maintaining a capacity ratio (CR) between 0.01 and 0.2. This integration can potentially exceed the energy demands of the region’s copper mining industry, contributing to significant reductions in fossil fuel reliance and promoting the commercialization of surplus hydrogen.

Downloads

Download data is not yet available.

References

[1] R. 21, “Renewables 2023 global status report,” Tech. Rep., 2023. [Online]. Availa-ble: https://www.ren21.net/wpcontent/uploads/2019/05/GSR2023_GlobalOverview_Full_Report_with_endnotes_web.pdf.

[2] I. Arias, A. Castillejo-Cuberos, F. G. Battisti, et al., “An in-depth system-level as-sessment of green hydrogen production by coupling solid oxide electrolysis and so-lar thermal systems,” Energy Conversion and Management, vol. 327, p. 119 537, 2025, ISSN: 0196- 8904. DOI: https://doi.org/10.1016/j.enconman.2025.119537. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0196890425000603.

[3] L. F. Gonza´lez-Portillo, K. Albrecht, and C. K. Ho, “Techno-economic optimization of csp plants with free-falling particle receivers,” Entropy, vol. 23, no. 1, 2021, ISSN: 1099-4300. DOI: 10.3390/e23010076. [Online]. Available: Available: https://www.mdpi.com/1099-4300/23/1/76.

[4] P. G. Gan, W. Ye, and P. John, “System Modelling and Optimization of a Particle-Based CSP System,” The Australian National University: Canberra, Australia, 2021.

[5] J. Chen, K. Cheng, X. Li, X. Huai, and H. Dong, “Thermodynamic evaluation and optimization of supercritical co2 brayton cycle considering recuperator types and designs,” Journal of Cleaner Production, vol. 414, p. 137 615, 2023, ISSN: 0959-6526. DOI: https:// doi. org/ 10 . 1016 / j. jclepro. 2023 . 137615. [Online]. Available: https://www . sciencedirect.com/science/article/pii/S0959652623017730.

[6] M. J. Blanco, K. Milidonis, and A. M. Bonanos, “Updating the psa sun position algo-rithm,” Solar Energy, vol. 212, pp. 339–341, 2020, ISSN: 0038-092X. DOI: https://doi.org/ 10.1016/j.solener.2020.10.084. [Online]. Available: https://www.sciencedirect. com/science/article/pii/S0038092X20311488.

[7] L. F. Gonza´lez-Portillo, V. Soria-Alcaide, K. Albrecht, C. K. Ho, and B. Mills, “Benchmark and analysis of a particle receiver 1D model,” Solar Energy, vol. 255, pp. 301–313, May 2023, ISSN: 0038-092X. DOI: 10.1016/J.SOLENER.2023.03.046.

[8] M. Ni, M. K. Leung, and D. Y. Leung, “Parametric study of solid oxide steam elec-trolyzer for hydrogen production,” International Journal of Hydrogen Energy, vol. 32, no. 13, pp. 2305–2313, 2007, ICHS-2005, ISSN: 0360-3199. DOI: https://doi.org/10.1016/j.ijhydene. 2007 . 03 . 001. [Online]. Availab-le:https://www.sciencedirect.com/science/article/pii/S0360319907001358.

[9] H. Zhang, J. Ye, X. Hu, H. Huang, H. Wang, and J. Han, “Diffusion-reaction model and electrolysis dynamic characteristics of electrode surface and channel in solid oxide elec- trolytic cell,” in 2022 9th International Forum on Electrical Engineering and Automation (IFEEA), 2022, pp. 813–820. DOI: 10.1109/IFEEA57288.2022.10038101.

[10] I. Arias, F. G. Battisti, J. Romero-Ramos, et al., “Assessing system-level synergies be- tween photovoltaic and proton exchange membrane electrolyzers for solar-powered hy- drogen production,” Applied Energy, vol. 368, p. 123 495, 2024, ISSN: 0306-2619. DOI: https:// doi. org/ 10 . 1016 / j. apenergy. 2024 . 123495. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S030626192400878X.

[11] C. K. Ho, J. Sment, K. Albrecht, et al., “Gen 3 particle pilot plant (g3p3) – high-temperature particle system for concentrating solar power (phases 1 and 2),” Nov. 2021. DOI: 10.2172/ 1832285. [Online]. Available: https://www.osti.gov/biblio/1832285.

[12] R. Anghilante, D. Colomar, A. Brisse, and M. Marrony, “Bottom-up cost evaluation of soec systems in the range of 10–100 mw,” International Journal of Hydrogen Energy, vol. 43, no. 45, pp. 20 309–20 322, 2018, ISSN: 0360-3199. DOI: https://doi.org/10.1016/j.ijhydene.2018.08.161.[Online]. Availa-ble:https://www.sciencedirect.com/science/article/pii/S0360319918327368.

[13] J. H. Prosser, B. D. James, B. M. Murphy, et al., “Cost analysis of hy-drogen production by high-temperature solid oxide electrolysis,” International Journal of Hydrogen Energy, vol. 49, pp. 207–227, 2024, ISSN: 0360-3199. DOI: https://doi.org/10.1016/j.ijhydene.2023.07.084. [Online]. Available: https://www .sciencedirect.com / science/article/pii/S0360319923034985.

[14] U. D. of Energy, Technical targets for high temperature electrolysis, Accessed on March 5, 2024, 2022. [Online]. Available: https : / / www . energy . gov / eere / fuelcells / technical-targets-high-temperature-electrolysis.

[15] M. Mohebali Nejadian, P. Ahmadi, and E. Houshfar, “Comparative optimization study of three novel integrated hydrogen production systems with SOEC, PEM, and alkaline electrolyzer,” Fuel, vol. 336, no. November 2022, p. 126 835, 2023, ISSN: 00162361.DOI:10.1016/j.fuel.2022.126835.[Online].Available: https://doi.org/10.1016/j.fuel. 2022.126835.

[16] A. T. Mayyas, M. F. Ruth, B. S. Pivovar, G. Bender, and K. B. Wipke, “Manufac-turing cost analysis for proton exchange membrane water electrolyzers,” National Renewable Energy Laboratory (NREL), Tech. Rep., Aug. 2019. DOI: 10.2172/1557965. [Online]. Available: https://www.osti.gov/biblio/1557965.

Downloads

Published

2026-01-26

How to Cite

Arias, I. J., Battisti, F. G., Castillejo-Cuberos, A., Romero-Ramos, J. A., Valenzuela, L., González-Portillo, L. F., … Escobar, R. (2026). System-Level Assessment of Green Hydrogen Production via SOEC-Solar Thermal Integration. SolarPACES Conference Proceedings, 3. https://doi.org/10.52825/solarpaces.v3i.2344

Conference Proceedings Volume

Section

Analysis and Simulation of CSP and Hybridized Systems
Received 2024-09-04
Accepted 2025-11-11
Published 2026-01-26