SolPOC: A Python Package for Modelling the Optical Coating Used in Solar Thermal Energy Systems
DOI:
https://doi.org/10.52825/solarpaces.v3i.2349Keywords:
Thin Layers, Modelling, Solar Energy, OpticsAbstract
Solar collectors of all types (thermal or photovoltaic, with or without concentration) require one or more surface treatments during their solar radiation conversion. These treatments are made up of thin layers of materials stacked that constitute mirrors, glass panes, thermal absorbers, or cover the junctions of PV cells. To allow all stakeholders in the solar community to easily model the optical behavior of their thin layer stacks we propose our in-house code. SolPOC (Solar Performances Optimization Code) is a Python Package specifically designed to provide a better understanding of coatings, thin film deposition of materials for solar energy applica-tions and especially for Solar Thermal Energy Systems. The package includes a stable and fast method to calculate the spectral reflectivity, transmissivity, and absorptivity of a stack of thin films over the full solar spectrum and maximize the solar performance of the stack by op-timizing its characteristics. SolPOC comes with several optimization methods, a script using multiprocessing pool tools, and a comprehensive database of refractive indices of real materi-als. The code has already produced major scientific advances in research on coatings for solar thermal systems. It is simple to use for non-coder users, automatically saves important results and is freely available on GitHub with a complete documentation and tutorials.
Downloads
References
[1] A. Grosjean, A. Soum-Glaude, L. Thomas, Replacing silver by aluminum in solar mirrors by improving solar reflectance with dielectric top layers, Sustainable Materials and Technologies 29 (2021) e00307. https://doi.org/10.1016/J.SUSMAT.2021.E00307.
[2] A. Grosjean, A. Soum-Glaude, P. Neveu, L. Thomas, Comprehensive simulation and optimiza-tion of porous SiO2 antireflective coating to improve glass solar transmittance for solar energy applications, Solar Energy Materials and Solar Cells 182 (2018) 166–177. https://doi.org/10.1016/J.SOLMAT.2018.03.040.
[3] C. Atkinson, C.L. Sansom, H.J. Almond, C.P. Shaw, Coatings for concentrating solar systems – A review, Renewable and Sustainable Energy Reviews 45 (2015) 113–122. https://doi.org/https://doi.org/10.1016/j.rser.2015.01.015.
[4] Flamant Gilles, Matériaux pour le solaire à concentration, in: Le Solaire à Concentration, ISTE, 2021.
[5] A. Soum-Glaude, I. Bousquet, L. Thomas, G. Flamant, Optical modeling of multilayered coat-ings based on SiC(N)H materials for their potential use as high-temperature solar selective ab-sorbers, Solar Energy Materials and Solar Cells 117 (2013) 315–323. https://doi.org/10.1016/j.solmat.2013.06.030.
[6] Antoine Grosjean, Thalita Drumond, SolPOC, (2023). https://github.com/SolPOCandCo/SolPOC (accessed April 22, 2024).
[7] Python Package Index - PyPI, (2023). https://pypi.org/ (accessed November 28, 2023).
[8] Antoine Grosjean, Pauline Bennet, Thalita Drumond, Amine Mahammou, Denis Langevin, An-toine Moreau, Audrey Soum-Glaude, Solar Performance Optimization Code for the optical re-sponse of multilayer stacks in Python: SolPOC, SciPost (n.d.). https://scipost.org/submissions/scipost_202403_00005v1/ (accessed April 22, 2024).
[9] D. Langevin, P. Bennet, A. Khaireh-Walieh, P. Wiecha, O. Teytaud, A. Moreau, PyMoosh : a comprehensive numerical toolkit for computing the optical properties of multilayered structures, (2023). http://arxiv.org/abs/2309.00654.
[10] F.-G. Aranzazu, S. Florian, M. Marco, S. Fabienne, H. Anna, H. Carlos, le B. Estelle, S.-G. Audrey, Parameters and Method to Evaluate the Reflectance Properties of Reflector Materials for Concentrating Solar Power Technology Under Laboratory Conditions, Official Reflectance Guideline Version 3.1, 2020.
[11] A. Luce, A. Mahdavi, F. Marquardt, H. Wankerl, TMM-Fast, a transfer matrix computation package for multilayer thin-film optimization: tutorial, Journal of the Optical Society of America A 39 (2022) 1007. https://doi.org/10.1364/josaa.450928.
[12] Alexander Luce, TMM Fast, (2023). https://github.com/MLResearchAtOSRAM/tmm_fast (ac-cessed September 13, 2023).
[13] Moreau Antoine, Bennet Pauline, Langevin Denis, Wiecha Peter, PyMoosh, (2023). https://github.com/AnMoreau/PyMoosh (accessed September 12, 2023).
[14] D. Alonso-Álvarez, T. Wilson, P. Pearce, M. Führer, D. Farrell, N. Ekins-Daukes, Solcore: a multi-scale, Python-based library for modelling solar cells and semiconductor materials, J Comput Electron 17 (2018) 1099–1123. https://doi.org/10.1007/s10825-018-1171-3.
[15] M. N. Polyanskiy, Refractive index database, (2023). https://refractiveindex.info (accessed September 11, 2023).
[16] Schott Optical Glass Datasheets, 2023. obtained from http://www.schott.com (accessed Sep-tember 11, 2023).
[17] A. Soum-Glaude, I. Bousquet, M. Bichotte, S. Quoizola, L. Thomas, G. Flamant, Optical Char-acterization and Modeling of Coatings Intended as High Temperature Solar Selective Absorb-ers, Energy Procedia 49 (2014) 530–537. https://doi.org/10.1016/J.EGYPRO.2014.03.057.
[18] Aránzazu Fernández-García, Florian Sutter, Marco Montecchi, Fabienne Sallaberry (CENER), Anna Heimsath (Fraunhofer ISE), Carlos Heras, Estelle Le Baron, Audrey Soum-Glaude, Guidelines Parameters and Methode to Evaluate the Reflectance Properties OF Materials for Concentrating Solar Power Technology Under Laboratory Conditions, Official Reflectance Guideline Version 3.1 April 2020, 2020.
[19] A. Grosjean, A. Soum-Glaude, L. Thomas, Influence of operating conditions on the optical optimization of solar selective absorber coatings, Solar Energy Materials and Solar Cells 230 (2021) 111280. https://doi.org/10.1016/J.SOLMAT.2021.111280.
[20] D.R. Myers, K. Emery, C. Gueymard, Proposed reference spectral irradiance standards to improve concentrating photovoltaic system design and performance evaluation, in: Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002., 2002: pp. 923–926. https://doi.org/10.1109/PVSC.2002.1190731.
[21] S. Winter, D. Friedrich, Effects of the New Standard IEC 60904-3:2008 on the Calibration Re-sults of Common Solar Cell Types, (2009). https://doi.org/10.4229/24thEUPVSEC2009-4AV.3.67.
[22] J. Kennedy, R. Eberhart, Particle Swarm Optimization, in: page 1942--1948. Proceedings of the IEEE International Conference on Neural Networks (Ed.), 1995. https://doi.org/http://dx.doi.org/10.1109/ICNN.1995.488968.
[23] R. Storn, K. Price, Differential Evolution – A Simple and Efficient Heuristic for global Optimiza-tion over Continuous Spaces, Journal of Global Optimization 11 (1997) 341–359. https://doi.org/10.1023/A:1008202821328.
[24] M.A. Barry, V. Berthier, B.D. Wilts, M.C. Cambourieux, P. Bennet, R. Pollès, O. Teytaud, E. Centeno, N. Biais, A. Moreau, Evolutionary algorithms converge towards evolved biological photonic structures, Sci Rep 10 (2020). https://doi.org/10.1038/s41598-020-68719-3.
[25] P. Bennet, Optimisation numérique des structures photoniques, 2022. http://www.theses.fr/2022UCFAC052/document.
[26] A. Mahammou, A. Grosjean, M. El Morabit, B. Plujat, S. Quoizola, L. Thomas, A. Soum-Glaude, Spectrally Selective Mirror Coatings for Hybrid PV/CSP Receivers, in: 29th SolarPAC-ES Conference, October 10 – October 13, 2023, Sydney, Australia, Sidney Australia, n.d.
[27] D.P. Rodgers, Improvements in Multiprocessor Sgstem Design, 1985.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Antoine Grosjean, Pauline Bennet , Thalita Drumond, Amine Mahammou, Denis Langevin, Antoine Moreau, Audrey Soum-Glaude

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-05-21
Published 2025-11-24
Funding data
-
Agence Nationale de la Recherche
Grant numbers ANR-10-LABX-22-01-SOLSTICE;16-IDEX-0001 CAP 20-25