Upscaling and Testing of Air-Based Rotary Solar Thermal Receivers for Concentrated Solar Power Applications
DOI:
https://doi.org/10.52825/solarpaces.v3i.2357Keywords:
Rotary Receiver, Solar Thermal Receiver, High Temperature Air, Concentrated Solar PowerAbstract
Odqa Renewable Energy Technologies Ltd has successfully scaled its air-based rotary solar thermal receiver design from 10kW to 100kW. A 10kW-scale air-based rotary solar thermal receiver was tested in Odqa’s in-house solar simulator facility in late-2022. Learning from the experience, an improved solar thermal receiver rotor geometry has been developed and built, its mechanical design has been proven in a heliostat field test carried out at PROTEAS, The Cyprus Institute. A Predictive Engineering Analytics approach has been developed to predict the thermal performance and for the purpose of upscaling of the solar thermal receiver. As a result, the thermal design for a 100kW-scale solar thermal receiver has been produced, which subsequently was built at Odqa and tested at the SynLight solar simulator facility at the Institute of Solar Research, German Aerospace Center (DLR).
Downloads
References
[1] Kwan, P.-W., Pearce, R., Ireland, P. T., Ngai, C. C., Mallon, O., Wood, E., Loasby, M., and Karaca, G., “Development of Rotary Solar Receiver and Solar Simulator Facility for Concentrated Solar Power Applications”, In proceeding: SolarPACES 2022, 28th Interna-tional Conference on Concentrating Solar Power and Chemical Energy Systems, Vol. 1, 2023, doi: https://doi.org/10.52825/solarpaces.v1i.626.
[2] Romero, M., Buck, R., and Pacheco, J. E., "An Update on Solar Central Receiver Sys-tems, Projects, and Technologies", Journal of Solar Energy Engineering, Volume 124, Is-sue 2, 98-108 (11 pages), 2002, doi: https://doi.org/10.1115/1.1467921.
[3] Lubkoll, M., von Backström, T. W., and Kröge, D. G., "Survey on Pressurized Air Re-ceiver Development". In Proceedings of SASEC 2014 (Port Elizabeth, South Africa), 2014, online: https://sterg.sun.ac.za/wp-content/uploads/2018/07/Lubkoll-501.pdf
[4] Stokos, K. G., Stiliaris, E., Bonanos, A. M., Georgiou, M. C., Guillen, E., Montenon, A., and Papanicolas, C. N., “The control system at PROTEAS”, AIP Conference Proceed-ings, Vol. 2033, Issue 1, 210019, 2018, doi: https://doi.org/10.1063/1.5067221.
[5] Wieghardt, K., Funken, K.-H., Dibowski, G., Hoffschmidt, B., Laaber, D., Hilger, P. and Eßer, K.-P., "SynLight – the world’s largest artificial sun", AIP Conference Proceedings, Vol. 1734, Issue 1, 030038, 2016, doi: https://doi.org/10.1063/1.4949090.
[6] Kribus, A., Doron, P., Rubin, R., Karni, J., Reuven, R., Duchan, S., and Taragan, E., "A Multistage Solar Receiver: The Route to High Temperature", Solar Energy, Vol. 67, Nos. 1-3, pp. 3-11, 1999, doi: https://doi.org/10.1016/S0038-092X(00)00056-6.
[7] Hoffschmidt, B., Tellez, F. M., Valverde, A., Fernandez, J., and Fernandez, V., "Perfor-mance Evaluation of the 200-kWth HiTRec-II Open Volumetric Air Receiver", Journal of Solar Energy Engineering, Feb 2003, Vol. 125, Issue 1, 87-94 (8 pages), doi: https://doi.org/10.1115/1.1530627.
[8] Heller, P. Pfänder, M., Denk, T., Tellez, F., Valverde A., Fernandez J., and Ring, A., "Test and evaluation of a solar powered gas turbine system", Solar Energy, Vol. 80, Issue 10, pp. 1225-1230, 2006, doi: https://doi.org/10.1016/j.solener.2005.04.020.
[9] Amsbeck L, Helsch G, Roger M, Uhlig R.,"Development of a Broadband antireflection coated transparent silica window for a solar-hybrid microturbine systems", In: Proceed-ings of solarPACES 2009, Berlin, Germany; September 15–18, 2009, online: https://elib.dlr.de/61593/.
[10] Hischier, I., Poživil, P., and Steinfeld, A., "A Modular Ceramic Cavity-Receiver for High-Temperature High-Concentration Solar Applications", Journal of Solar Energy Engineer-ing, Vol. 134, Issue 1, 011004 (6 pages), 2012, doi: https://doi.org/10.1115/1.4005107.
[11] Hischier, I., Leumann, P., and Steinfeld, A. "Experimental and Numerical Analyses of a Pressurized Air Receiver for Solar-Driven Gas Turbines", Journal of Solar Energy
Engineering, Volume 134, Issue 2, 021003 (8 pages), 2012; doi: https://doi.org/10.1115/1.4005446.
[12] Quero, M., Korzynietz, R., Ebert, M., Jiménez, A. A., del Río, A., Brioso, J. A., "Solugas - Operation experience of the first solar hybrid gas turbine system at MW scale", Energy Procedia, Vol. 49, 2014, pp. 1820-1830, doi: https://doi.org/10.1016/j.egypro.2014.03.193.
[13] Nakakura, M., Ohtake, M., Matsubara, K., Yoshida, K., Choa, H. S., Kodama, T., Gokon, N., "Development of a receiver evaluation system using 30 kWth point concentration so-lar simulator", Energy Procedia, Vol. 69, 2015, pp. 497 – 505, doi: https://doi.org/10.1016/j.egypro.2015.03.058.
[14] Pabst, C., Feckler, G., Schmitz, S., Smirnova, O., Capuano, R., Hirth, P., and Fend, T., "Experimental performance of an advanced metal volumetric air receiver for Solar Tow-ers", Renewable Energy, Volume 106, pp. 91-98, 2017, doi: https://doi.org/10.1016/j.renene.2017.01.016.
[15] Trevisan, S., and Guedez, R., "Design optimization of an innovative layered radial-flow high-temperature packed bed thermal energy storage", Journal of Energy Storage, Vol-ume 83, 110767 (16 pages), 2024, doi: https://doi.org/10.1016/j.est.2024.110767.
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Pok-Wang Kwan, Mark Loasby, Augustin Wambarsie, Chiang Churchill Ngai, Peter T. Ireland, Joe Baddeley, Katarina Marčeta, Orla Mallon, Asli Kaya, Dave Mountain, Scott Battams, Ashley Cooper, MyeongGeun Choi, George Wilson, Kirk Ashley-Morgan, Gediz Karaca

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-05-07
Published 2025-10-22