Modeling and Energetic Analysis of a Supercritical Carbon Dioxide sCO2 Recompression-Organic Rankine Cycle Integrated to a Central Tower Receiver

Authors

DOI:

https://doi.org/10.52825/solarpaces.v3i.2365

Keywords:

Concentrated Solar Power, Fluidized Bed, Supercritical CO2, ORC

Abstract

This study presents a comprehensive thermodynamic model and energetic analysis of a hybrid Concentrated Solar Power (CSP) system incorporating a supercritical carbon dioxide (sCO2) Brayton cycle and an Organic Rankine Cycle (ORC). The CSP system uses a central tower receiver with a fluidized bed of silicon carbide particles and air as the heat transfer medium. Operating at a temperature of 650°C, the system demonstrates a heat transfer coefficient of 411 W/m2K. Key findings highlight the sensitivity of the convective coefficient to gas velocity and the effect of particle mass flow on receiver efficiency. Fuel mass flow reductions of up to 3.7% were achieved through particle mass flow adjustments, while variations in compression ratio and steam turbine inlet temperature affected overall cycle performance and efficiency. The study highlights the potential of such integrated systems to improve thermal efficiency, although further optimization is needed to balance fuel consumption and environmental impact.

Downloads

Download data is not yet available.

References

[1] Flamant, G., Gauthier, D., Benoit, H., Sans, J. L., Garcia, R., Boissière, B., ... & Hemati, M. (2013). Dense suspension of solid particles as a new heat transfer fluid for concentrated so-lar thermal plants: On-sun proof of concept. Chemical engineering science, 102, 567-576, doi: https://doi.org/10.1016/j.ces.2013.08.051.

[2] Lopez, I. P., Benoit, H., Gauthier, D., Sans, J. L., Guillot, E., Mazza, G., & Flamant, G. (2016). On-sun operation of a 150 kWth pilot solar receiver using dense particle suspension as heat transfer fluid. Solar Energy, 137, 463-476, doi: https://doi.org/10.1016/j.solener.2016.08.034

[3] Hay, R., & Celik, K. (2020). Accelerated carbonation of reactive magnesium oxide cement (RMC)-based composite with supercritical carbon dioxide (scCO2). Journal of Cleaner Pro-duction, 248, 119282, doi: https://doi.org/10.1016/j.jclepro.2019.119282.

[4] Sharan, P., Neises, T., & Turchi, C. (2018). Optimal feed flow sequence for multi-effect dis-tillation system integrated with supercritical carbon dioxide Brayton cycle for seawater desali-nation. Journal of Cleaner Production, 196, 889-901, doi: https://doi.org/10.1016/j.jclepro.2018.06.009.

[5] Liu, Z., Cao, X., Wang, T., Jia, W., & Duan, Z. (2019). Comparative evaluation of the refrig-eration compressor performance under different valve parameters in a trans-critical CO2 cy-cle. International Journal of Refrigeration, 101, 34-46, doi: https://doi.org/10.1016/j.ijrefrig.2019.02.034.

[6] Ahn, Y., Bae, S. J., Kim, M., Cho, S. K., Baik, S., Lee, J. I., & Cha, J. E. (2015). Review of supercritical CO2 power cycle technology and current status of research and develop-ment. Nuclear engineering and technology, 47(6), 647-661, doi: https://doi.org/10.1016/j.net.2015.06.009.

[7] Padilla, R. V., Too, Y. C. S., Benito, R., & Stein, W. (2015). Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. Applied Energy, 148, 348-365, doi: https://doi.org/10.1016/j.apenergy.2015.03.090.

[8] Wu, C., Wang, S. S., & Li, J. (2018). Exergoeconomic analysis and optimization of a com-bined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants. Energy Conversion and Management, 171, 936-952, doi: https://doi.org/10.1016/j.enconman.2018.06.041.

[9] Gallo, A., Spelling, J., Romero, M., & González-Aguilar, J. (2015). Preliminary design and performance analysis of a multi-megawatt scale dense particle suspension receiver. Energy Procedia, 69, 388-397, doi: https://doi.org/10.1016/j.egypro.2015.03.045.

[10] Córcoles, J. I., Díaz-Heras, M., Fernández-Torrijos, M., & Almendros-Ibáñez, J. A. (2023). Flow and heat transfer analysis of a gas–particle fluidized dense suspension in a tube for CSP applications. Renewable Energy, 206, 1-12, doi: https://doi.org/10.1016/j.renene.2023.02.004.

[11] Inc. Wolfram Research, “Mathematica, Version 13.2.” Champaign, IL, 2023.

[12] Reyes-Belmonte, M. A., Sebastián, A., Spelling, J., Romero, M., & González-Aguilar, J. (2019). Annual performance of subcritical Rankine cycle coupled to an innovative particle re-ceiver solar power plant. Renewable energy, 130, 786-795, doi: https://doi.org/10.1016/j.renene.2018.06.109.

[13] Molerus, O., & Wirth, K. E. (2012). Heat transfer in fluidized beds (Vol. 11). Springer Sci-ence & Business Media, doi: 10.1007/978-94-011-5842-8.

[14] Collings, E. W., Jelinek, F. J., Ho, J. C., & Mathur, M. P. (1977). Magnetic and thermal prop-erties of stainless steel and Inconel at cryogenic temperatures. In Advances in Cryogenic Engineering: Volume 22 (pp. 159-173). Boston, MA: Springer US.

[15] Spelling, J., Gallo, A., Romero, M., & González-Aguilar, J. (2015). A high-efficiency solar thermal power plant using a dense particle suspension as the heat transfer fluid. Energy Procedia, 69, 1160-1170.

[16] Akbari, A. D., & Mahmoudi, S. M. (2014). Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cyc-le. Energy, 78, 501-512, doi: https://doi.org/10.1016/j.energy.2014.10.037.

[17] Bergman, T. L., Lavine, A. S., Incropera, F. P., & DeWitt, D. P. (2011). Introduction to heat transfer. John Wiley & Sons.

[18] Olivenza-León, D., Medina, A., & Hernández, A. C. (2015). Thermodynamic modeling of a hybrid solar gas-turbine power plant. Energy Conversion and Management, 93, 435-447, doi: https://doi.org/10.1016/j.enconman.2015.01.027.

Downloads

Published

2026-01-26

How to Cite

Moctezuma-Hernandez, J. A., García-Ferrero , J., P. Merchan , R., Belman-Flores, J., Cano-Andrade, S., & Roco, J. (2026). Modeling and Energetic Analysis of a Supercritical Carbon Dioxide sCO2 Recompression-Organic Rankine Cycle Integrated to a Central Tower Receiver. SolarPACES Conference Proceedings, 3. https://doi.org/10.52825/solarpaces.v3i.2365
Received 2024-09-06
Accepted 2025-07-03
Published 2026-01-26