Progress and Prospects of TES for Central Receiver-Based CSP Plants
DOI:
https://doi.org/10.52825/solarpaces.v3i.2382Keywords:
CSP, Central Receiver Based Plants, TESAbstract
This review categorizes the thermal energy storage (TES) technologies—sensible heat, latent heat, and thermochemical storage—and evaluates their development, application, and performance within central receiver-based concentrated solar power plants. This study explores the progression of TES systems, delineating the evolution from technologies such as saturated steam and molten salt, first used in the Eurelios power plant in 1980 as a protective storage solution for 30 minutes, to commercial molten salt storage capacities of up to 15 hours. This study also examines emerging research and development technologies aimed at achieving higher efficiencies and operating temperatures. The objective is to identify technological trends, assess the efficacy of different TES systems, and highlight future directions for research and application.
Downloads
References
“Goal 7 | Department of Economic and Social Affairs.” Accessed: Sep. 07, 2024. [Online]. Available: https://sdgs.un.org/goals/goal7
R. P. Merchán, M. J. Santos, A. Medina, and A. Calvo Hernández, “High temperature central tower plants for concentrated solar power: 2021 overview,” Mar. 01, 2022, Elsevier Ltd. doi: 10.1016/j.rser.2021.111828.
G. D. D. Borgese, J.J. Faure, J. Gretz, and G. Schober, “Eurelios, The 1-MW(el) Helioelectric Power Plant of the European Community Program,” J Sol Energy Eng, vol. 106, no. 77, pp. 1–12, 1984, doi: 10.1115/1.3267565
J. I. Burgaleta, S. Arias, and D. Ramirez, “Gemasolar, the first tower thermosolar commercial plant with molten salt storage,” 2011. [Online]. Available: https://www.researchgate.net/publication/264855919
“CSP Projects Around the World - SolarPACES.” Accessed: Sep. 22, 2022. [Online]. Available: https://www.solarpaces.org/csp-technologies/csp-projects-around-the-world/
Power Tower | Concentrating Solar Power Projects | NREL.” Accessed: Sep. 08, 2022. [Online]. Available: https://solarpaces.nrel.gov/by-technology/power-tower
P. D. M. Jr and D. Y. Goswami, “Thermal energy storage using chloride salts and their eutectics,” Appl Therm Eng, no. July, 2016, doi: 10.1016/j.applthermaleng.2016.07.046.
J. N. Sment et al., “Design considerations for commercial scale particle-based thermal energy storage systems,” in AIP Conference Proceedings, American Institute of Physics Inc., May 2022. doi: 10.1063/5.0086995.
G. A. Farulla, M. Cellura, F. Guarino, and M. Ferraro, “A review of thermochemical energy storage systems for power grid support,” May 01, 2020, MDPI AG. doi: 10.3390/app10093142.
D. S. Jayathunga, H. P. Karunathilake, M. Narayana, and S. Witharana, “Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review,” Jan. 01, 2024, Elsevier Ltd. doi: 10.1016/j.rser.2023.113904.
Z. Yang and S. V. Garimella, “Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions,” Appl Energy, vol. 87, no. 11, pp. 3322–3329, 2010, doi: 10.1016/j.apenergy.2010.04.024.
V. G. Belessiotis, E. Papanicolaou, and D. National, History of Solar Energy, vol. 3. Elsevier Ltd., 2012. doi: 10.1016/B978-0-08-087872-0.00303-6.
G. Francia, “Pilot plants of solar steam generating stations,” Solar Energy, vol. 12, pp. 51–64, Sep. 1968, doi: 10.1016/0038-092X(68)90024-8.
F. Trombe and Albert Le Phat Vinh, “Thousand kW solar furnace, built by the National Center of Scientific Research, in Odeillo (France),” Solar Energy, vol. 15, no. 1, pp. 57–61, May 1973, doi: 10.1016/0038-092X(73)90006-6.
J. Gretz, “EURELIOS, the world’s first thermomechanical helioelectric power plant,” Endeavour, vol. 6, no. 1, pp. 34–39, Jan. 1982, doi: 10.1016/0160-9327(82)90008-4.
“Plataforma Solar de Almería - Thermal Energy Storage Unit.” Accessed: Apr. 16, 2024. [Online]. Available: https://www.psa.es/en/units/ate/index.php
L. G. Radosevich and A. C. Skinrood, “The Power Production Operation of Solar One, the 10 MWe Solar Thermal Central Receiver Pilot Plant 1,” 1989. [Online]. Available: http://solarenergyengineering.asmedigitalcollection.asme.org/, doi: 10.1115/1.3268300
J. E. Pacheco, “Final Test and Evaluation Results from the Solar Two Project,” 2002, doi: 10.2172/793226
L. P. Drouot and M. J. Hillairet, “The themis program and the 2500-KW themis solar power station at targasonne,” 1984. doi: 10.1115/1.3267567.
“Gemasolar Concentrated Solar Power - Power Technology.” Accessed: Sep. 29, 2022. [Online]. Available: https://www.power-technology.com/projects/gemasolar-concentrated-solar-power/
G. Peiró, C. Prieto, J. Gasia, A. Jové, L. Miró, and L. F. Cabeza, “Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation,” Renew Energy, vol. 121, pp. 236–248, Jun. 2018, doi: 10.1016/j.renene.2018.01.026.
G. Angelini, A. Lucchini, and G. Manzolini, “Comparison of thermocline molten salt storage performances to commercial two-tank configuration,” in Energy Procedia, Elsevier Ltd, 2014, pp. 694–704. doi: 10.1016/j.egypro.2014.03.075.
SolarPACES, “Data base Guru CSP(2023-07-01),” Jul. 2023, doi: 10.5281/ZENODO.8191855.
C. S. Turchi, J. Vidal, and M. Bauer, “Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits,” Solar Energy, vol. 164, pp. 38–46, Apr. 2018, doi: 10.1016/j.solener.2018.01.063.
J. F. Hoffmann, T. Fasquelle, V. Goetz, and X. Py, “Experimental and numerical investigation of a thermocline thermal energy storage tank,” Appl Therm Eng, vol. 114, pp. 896–904, 2017, doi: 10.1016/j.applthermaleng.2016.12.053.
I. Al Asmi, K. Knobloch, R. Le Goff Latimier, T. Esence, K. Engelbrecht, and H. Ben Ahmed, “Thermocline thermal storage modeling towards its predictive optimal management,” J Energy Storage, vol. 52, Aug. 2022, doi: 10.1016/j.est.2022.104979.
T. Esence, A. Bruch, S. Molina, B. Stutz, and J. F. Fourmigué, “A review on experience feedback and numerical modeling of packed-bed thermal energy storage systems,” 2017, Elsevier Ltd. doi: 10.1016/j.solener.2017.03.032.
A. Lidor, Y. Aschwanden, J. Häseli, P. Reckinger, P. Haueter, and A. Steinfeld, “High-temperature heat recovery from a solar reactor for the thermochemical redox splitting of H2O and CO2,” Appl Energy, vol. 329, p. 120211, Jan. 2023, doi: 10.1016/J.APENERGY.2022.120211.
A. Lidor and L. Zimmermann, “Experimental demonstration of high-temperature heat recovery in a solar reactor,” Solar Energy, vol. 262, p. 111915, Sep. 2023, doi: 10.1016/J.SOLENER.2023.111915.
A. Gutierrez et al., “Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials,” Jun. 01, 2016, Elsevier Ltd. doi: 10.1016/j.rser.2015.12.071.
I. Ortega-Fernández, N. Calvet, A. Gil, J. Rodríguez-Aseguinolaza, A. Faik, and B. D’Aguanno, “Thermophysical characterization of a by-product from the steel industry to be used as a sustainable and low-cost thermal energy storage material,” Energy, vol. 89, pp. 601–609, Sep. 2015, doi: 10.1016/j.energy.2015.05.153.
N. Calvet, G. Dejean, and X. Py, “WASTE FROM METALLURGIC INDUSTRY: A SUSTAINABLE HIGH-TEMPERATURE THERMAL ENERGY STORAGE MATERIAL FOR CONCENTRATED SOLAR POWER,” 2013. [Online]. Available: http://www.asme.org/about-asme/terms-of-use, doi: 10.1115/ES2013-18333
N. Lopez Ferber, K. M. Al Naimi, J. F. Hoffmann, K. Al-Ali, and N. Calvet, “Development of an electric arc furnace steel slag-based ceramic material for high temperature thermal energy storage applications,” J Energy Storage, vol. 51, Jul. 2022, doi: 10.1016/j.est.2022.104408.
M. M. S. Al-Azawii, S. F. H. Alhamdi, S. Braun, J. F. Hoffmann, N. Calvet, and R. Anderson, “Thermocline in packed bed thermal energy storage during charge-discharge cycle using recycled ceramic materials - Commercial scale designs at high temperature,” J Energy Storage, vol. 64, Aug. 2023, doi: 10.1016/j.est.2023.107209.
M. A. Keilany, M. Milhé, J. J. Bézian, Q. Falcoz, and G. Flamant, “Experimental evaluation of vitrified waste as solid fillers used in thermocline thermal energy storage with parametric analysis,” J Energy Storage, vol. 29, Jun. 2020, doi: 10.1016/j.est.2020.101285.
N. Calvet et al., “Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system,” Appl Energy, vol. 109, pp. 387–393, 2013, doi: 10.1016/j.apenergy.2012.12.078.
Z. Ma, R. Zhang, and F. Sawaged, “DESIGN OF PARTICLE-BASED THERMAL ENERGY STORAGE FOR A CONCENTRATING SOLAR POWER SYSTEM,” 2017. [Online]. Available: http://www.asme.org/about-asme/terms-of-use, 10.1115/ES2017-3099
M. Carlson and F. Alvarez, “Design of a 1 MWth Supercritical Carbon Dioxide Primary Heat Exchanger Test System,” Journal of Energy Resources Technology, Transactions of the ASME, vol. 143, no. 9, Sep. 2021, doi: 10.1115/1.4049289.
A. El-Leathy et al., “Thermal performance evaluation of lining materials used in thermal energy storage for a falling particle receiver based CSP system,” Solar Energy, vol. 178, pp. 268–277, Jan. 2019, doi: 10.1016/J.SOLENER.2018.12.047.
A. Miliozzi, R. Liberatore, T. Crescenzi, and E. Veca, “Experimental analysis of heat transfer in passive latent heat thermal energy storage systems for CSP plants,” in Energy Procedia, Elsevier Ltd, 2015, pp. 730–736. doi: 10.1016/j.egypro.2015.11.799.
G. Zanganeh, R. Khanna, C. Walser, A. Pedretti, A. Haselbacher, and A. Steinfeld, “Experimental and numerical investigation of combined sensible–latent heat for thermal energy storage at 575 °C and above,” Solar Energy, vol. 114, pp. 77–90, Apr. 2015, doi: 10.1016/J.SOLENER.2015.01.022.
G. Karagiannakis et al., “Thermochemical storage for CSP via redox structured reactors/heat exchangers: The RESTRUCTURE project,” in AIP Conference Proceedings, American Institute of Physics Inc., Jun. 2017. doi: 10.1063/1.4984453.
K. Zeng et al., “Solar pyrolysis of heavy metal contaminated biomass for gas fuel production,” Energy, vol. 187, Nov. 2019, doi: 10.1016/j.energy.2019.116016.
K. Randhir, M. Hayes, P. Schimmels, J. Petrasch, and J. Klausner, “Zero carbon solid-state rechargeable redox fuel for long duration and seasonal storage,” Joule, vol. 6, no. 11, pp. 2513–2534, Nov. 2022, doi: 10.1016/J.JOULE.2022.10.003.
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Brenda Hernandez Corona, Matteo Chiesa, Nicolas Lopez Ferber, Ahmad Mayyas, Nicolas Calvet

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-04-23
Published 2025-08-27