JCA Eni ENEA Project: CSP & Thermal Storage
DOI:
https://doi.org/10.52825/solarpaces.v3i.2395Keywords:
CSP, TES, PrototypeAbstract
This project is framed inside a three-year-long cooperation between Eni and ENEA. It concerns the development of prototypes, technologies, innovative processes, feasibility studies, scenario analysis, exchanging skills, and know-how. This is coherent with the promotion of joint initiatives in the field of energy production, from renewable sources and those with low CO2 emissions, supercomputing, superconductivity, and circular economy, including innovative processes for waste valorisation and production of biogas, biomethane and biochar. The “CSP & Thermal Storage” has the ambition to exploit solar sources to produce thermal energy according to the energy demand, regardless of the availability of the solar source, through the development of innovative solutions of plants with a programmable production capacity, through the coupling with innovative Thermal Energy Storage (TES) solutions. The objectives of this project are the identification of contexts for using Concentrating Solar Power / Concentrating Solar Heat (CSP/CSH) technology and thermal generation systems coupled to TES, the definition of the "business plan" for the enhancement of these technologies, the identification of partnerships with national and international subjects for the design of industrial solutions in the identified contexts of interest, and the joint participation in competitive tenders through research and development projects that can also lead to the creation, characterisation, and validation of prototype units. As for the energy storage, dynamic modelling of the thermocline and Phase Change Materials (PCM) storage systems is also expected, together with a broad-spectrum analysis of possible applications of CSP/CSH coupled with TES along the entire industrial energy supply chain (e.g.: upstream, downstream, power generation). Of particular importance is the development of TES prototypes to be tested on a molten salt-operated circuit integrating two different PCM systems with an Eni proprietary innovative thermocline TES based on concrete, to facilitate the management of the system and to supply high-quality heat to the user. This system consists of a module able to store 40 kWh of thermal energy by phase change materials (PCM), followed by a concrete module of about 150 kWh and another 40 kWh PCM TES with a higher phase change temperature. The overall operating temperature range of the system is 290÷450°C.
Downloads
References
[1] A. Abhat. Low temperature latent heat thermal energy storage: Heat storage materials. Solar Energy. 1983; 30(4):313–32. https://doi.org/10.1016/0038-092X(83)90186-X
[2] A. Miliozzi, G.M. Giannuzzi, D. Mazzei, R. Liberatore, T. Crescenzi, D. Mele. Dispositivo di accumulo termico, sistema modulare incorporante il dispositivo e relativo metodo di real-izzazione, 2017, Patent number 102017000129902, prensented 14/11/2017; grant nr. 102017000129902.
[3] A. Frazzica, M. Manzan, A. Sapienza, A. Freni, G. Toniato, G. Restuccia, Experimental testing of a hybrid sensible-latent heat storage system for domestic hot water applications, Applied Energy 183 (2016) 1157–1167. https://doi.org/10.1016/j.apenergy.2016.09.076
[4] C. Zauner, F. Hengstberger, B. Mörzinger, R. Hofmann, H. Walter. Experimental charac-terization and simulation of a hybrid sensible-latent heat storage, Applied Energy 189 (2017) 506–519. https://doi.org/10.1016/j.apenergy.2016.12.079
[5] M. Liu, S. Riahi, R. Jacob, M. Belusko, F. Bruno. Design of sensible and latent heat ther-mal energy storage systems for concentrated solar power plants: Thermal performance analysis. Renewable Energy 151 (2020) 1286-1297. https://doi.org/10.1016/j.renene.2019.11.115
[6] A. Frazzica, M. Manzan, V. Palomba, V. Brancato, A. Freni, A. Pezzi, B.M. Vaglieco. Ex-perimental Validation and Numerical Simulation of a Hybrid Sensible-Latent Thermal En-ergy Storage for Hot Water Provision on Ships. Energies 2022, 15, 2596. https://doi.org/10.3390/en15072596
[7] M. Sarvghad, T.A. Steinberg, G. Will. Corrosion of steel alloys in eutectic NaCl+Na2CO3 at 700°C and Li2CO3 + K2CO3 + Na2CO3 at 450°C for thermal energy storage. Solar Energy Materials and Solar Cells. 2017; 170:48–59. https://doi.org/10.1016/j.solmat.2017.05.063
[8] J. Luo, C.K. Deng, N. Tariq, N. Li, R.F. Han, H.H. Liu, et al. Corrosion behavior of SS316L in ternary Li2CO3–Na2CO3–K2CO3 eutectic mixture salt for concentrated solar power plants. Solar Energy Materials and Solar Cells. 2020; 217:110679. https://doi.org/10.1016/j.solmat.2020.110679
[9] Y. Grosu, A. Anagnostopoulos, M.E. Navarro, Y. Ding, A. Faik. Inhibiting hot corrosion of molten Li2CO3-Na2CO3-K2CO3 salt through graphitization of construction materials for concentrated solar power. Solar Energy Materials and Solar Cells. 2020; 215:110650. https://doi.org/10.1016/j.solmat.2020.110650
[10] J. Gallardo-González, M. Martínez, C. Barreneche, A.I. Fernández, M. Liu, N.H.S. Tay, et al. Corrosion of AISI316 as containment material for latent heat thermal energy storage systems based on carbonates. Solar Energy Materials and Solar Cells. 2018;186:1–8. https://doi.org/10.1016/j.solmat.2018.06.003
[11] G.S. Sau, V. Tripi, A.C. Tizzoni, R. Liberatore, E. Mansi, A. Spadoni, et al. High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants. Ener-gies (Basel). 2021 Aug 27;14(17):5339. https://doi.org/10.3390/en14175339
[12] A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews. 2009 Feb;13(2):318–45. https://doi.org/10.1016/j.rser.2007.10.005
[13] Y.E. Milián, A. Gutiérrez, M. Grágeda, S. Ushak. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical proper-ties. Renewable and Sustainable Energy Reviews. 2017 Jun;73:983–99. https://doi.org/10.1016/j.rser.2017.01.159
[14] D. Laing, T. Bauer, D. Lehmann, C. Bahl. Development of a thermal energy storage sy-stem for parabolic trough power plants with direct steam generation. In: Proceedings of the ASME 3rd International Conference on Energy Sustainability 2009, ES2009. 2009. https://doi.org/10.1115/1.4001472
[15] B. Seubert, R. Müller, D. Willert, T. Fluri. Experimental results from a laboratory-scale molten salt thermocline storage. AIP Conf Proc. 2017;1850. http://dx.doi.org/10.1063/1.4984446
[16] P. Garcia, G. Largiller, G. Matringe, L. Champelovier, S. Rougé. Experimental results from a pilot scale latent heat thermal energy storage for DSG power plants-Advanced operating strategies [Internet]. Available from: https://hal-cea.archives-ouvertes.fr/cea-03324205
[17] T. Bauer, D. Laing, R. Tamme. Characterization of sodium nitrate as phase change ma-terial. Int J Thermophys. 2012;33(1). https://doi.org/10.1007/s10765-011-1113-9
[18] A. Caraballo, S. Galán-Casado, Á Caballero, S. Serena. Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis. Energies 2021, 14, 1197. https://doi.org/10.3390/en14041197
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Raffaele Liberatore, Francesca Nana, Stefano Cardamone, Tamara Passera, Lino Carnelli, Valeria Russo, Adio Miliozzi, Daniele Nicolini, Giuseppe Petroni, Walter Gaggioli

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-05-05
Published 2025-11-25
Funding data
-
Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile
Grant numbers JCA Eni ENEA P3