Automated Heliostat Installation
Pile Driving and Efficient Material Flow for Reduced Heliostat Field Cost
DOI:
https://doi.org/10.52825/solarpaces.v3i.2422Keywords:
Central Receiver, Concentrator, Heliostat, Installation, CostAbstract
A concept for the automated installation of heliostats for solar tower power plants was developed with the primary objective of reducing installation costs. Following a discussion on the various types of foundations available for installation, the pile foundation was selected on account of its favourable cost per heliostat. The feasibility of this approach was assessed by calculating the wind loads and the structural stability. Vibratory pile driving was selected as the method for driving the pylons into the ground, as it enables the pile driving of very thin-walled pylons with minimal stress on the component. The installation of a heliostat is a two-step process, involving the piling of the pylons and the subsequent fastening of the concentrator with the tracking device. The fastening is facilitated by thin sheet metal screws, which were determined to be the optimal joining method, considering the requirements. In order to facilitate the efficient transportation of the components and the subsequent installation of several thousand heliostats on the solar field, various installation and material flow concepts were developed and evaluated, with particular attention to the resulting installation cost. Consequently, vehicle concepts for the automatic execution of the two process steps and for the material transport were derived and a design proposal is presented: The first is a heavy tracked vehicle for the purpose of pylon piling, and the second is two smaller vehicles for transporting and assembling the concentrators, with tracking devices.
Downloads
References
A. Pfahl et al., “Progress in Heliostat Development,” Solar Energy (152), 2017. https://dx.doi.org/10.1016/j.solener.2017.03.029.
A. Pfahl and V. Dohmen, “Low-Cost Materials for Heliostats,” SolarPACES 2023 confer-ence, Sydney, Australia.
B. Gross, “Beyond CSP – A Trillion Dollar Opportunity,” SolarPACES 2020 conference, online event.
J. Sment, A. Zolan, G. Zhu, “Status Quo of Heliostat Field Deployment Processes,” NREL-Report CP-5700-86058, 2023. https://www.nrel.gov/docs/fy23osti/86058.pdf.
H.-G. Kempfert. “Empfehlungen des Arbeitskreises ,Pfähle‘ - EA-Pfähle,“ 2nd edition. Berlin: Ernst, 2012. ISBN: 978-3-433-03005-9.
A. Pfahl, M. Buselmeier, M. Zaschke, “Wind Loads on Heliostats and Photovoltaic Track-ers of Various Aspect Ratios,” Solar Energy (85), 2185-2201, 2011. https://doi.org/10.1016/j.solener.2011.06.006.
D. Kolymbas, "Geotechnik,“ Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. isbn: 978-3-662-58471-2. doi: 10.1007/978-3-662-58472-9.
A.A. Rodger and G.S. Littlejohn, “A study of vibratory driving in granular soils,“ In: Géotechnique 30.3, 1980, S. 269–293. issn: 0016-8505. doi: 10.1680/geot.1980.30.3.269.
G. Kühn, “Vibrationsrammung und Bodenbeschaffenheit,“ In: Baumaschine und Bau-technik, Band 25 9, 1978.
H. König, Hrsg., “Maschinen im Baubetrieb: Grundlagen und Anwendung,“. 4th edition. Wiesbaden: Springer Vieweg, 2014. isbn: 978-3-658-03288-3. doi: 10.1007/978-3-658-03289-0.
P. Lammertz and W. Richwien, “Ermittlung der Tragfähigkeit von vibrierten Stahlrohr-pfählen,“ In: Pfahlsymposium. Institut für Grundbau und Bodenmechanik der Universität Duisburg Essen, 2007.
P. Schwarzbözl et al., “Visual HFLCAL – A software tool for layout and optimization of heliostat fields,” SolarPACES Proceedings, 2009. https://elib.dlr.de/60308/.
L. Grobelny, “Konzeptentwicklung von Heliostat-Installationsfahrzeugen,“ master thesis DLR and TU Clausthal, August 2024. https://elib.dlr.de/208087/1/Masterarbeit-Konzeptentw._von_Heliostat-Installationsfahrzeugen_LarsGrobelny_komp.pdf.
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Lars Grobelny, Andreas Pfahl

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-05-02
Published 2025-09-24