Modeling of an High-Concentration Solar Reactor for Dry Methane Reforming

Authors

DOI:

https://doi.org/10.52825/solarpaces.v3i.2449

Keywords:

Solar Fuels, Dry Methane Reforming, Micro Reactors

Abstract

Direct solar-powered reforming of methane has the potential to lower the CO2 footprint of reforming and to harvest solar energy with high-efficiency [1]. Combined with bio-sourced feedstock and recycled CO2 to perform dry methane reforming (DMR), this approach can highly decrease methane reforming environmental impact [2]. Using high solar concentration solar towers or parabolic dishes to provide the highly endothermal reaction heat required for DMR, it is possible to reach the temperatures of conventional reformers, ranging from 800°C up to 900°C. At this temperature, radiation losses are such that high solar concentrations approaching 1000x are required to reach high thermal efficiency, making heat flux management highly challenging. Previous work from Université de Sherbrooke experimentally shown the potential for such reactors to operate under high heat flux [3],[4]. The current work presents the modeling approach used to design these reactors and increase the heat flux within the absorption surface, while maintaining reasonable temperature drop within the reactor. Dimensional analysis if first assess that no diffusion limitation occurs within the reactor and the system can be simulated as a plug flow reactor with porous catalyst. Using DMR and RWGS kinetics from literature with 2D modeling in COMSOL Multiphysics, temperature and reaction rates along the reactor are evaluated showing consistency with experimental values. Parametrical analysis shows that optimal catalyst channels width appears to be equal or under 0.5 mm. Finally, it is demonstrated that optimal conversion occurs when around 1/3 of the catalytic bed is covered with metallic conductive fins. Over this value, increased conductivity gains are overpassed by the lowering of catalyst volume within the conduction chamber.

Downloads

Download data is not yet available.

References

C. Agrafiotis, H. von Storch, M. Roeb, et C. Sattler, « Solar thermal reforming of me-thane feedstocks for hydrogen and syngas production—A review », Renewable and Sus-tainable Energy Reviews, vol. 29, p. 656‑682, janv. 2014, doi: 10.1016/j.rser.2013.08.050.

B. R. De Vasconcelos et J.-M. Lavoie, « Is dry reforming the solution to reduce natural gas carbon footprint? », Int. J. EQ, vol. 3, no 1, p. 44‑56, janv. 2018, doi: 10.2495/EQ-V3-N1-44-56.

D. Francoeur et al., « Solar Methane Reforming Microreactor Proof-Of-Concept With A 2X2 Array on a Full-Scale Dish », SolarPACES Conference Proceedings, vol. 1, janv. 2024, doi: 10.52825/solarpaces.v1i.886.

P. Camus, J.-F. Dufault, D. Mehanovic, N. Braidy, L. G. Fréchette, et M. Picard, « Test-ing of a 3D-Printed Solar Micro-Reactor for Hydrogen Production via Natural Gas Re-forming », in Power MEMS 2019, Daytona Beach, Fl. USA, déc. 2019, p. 4.

E. J. Sheu, E. M. A. Mokheimer, et A. F. Ghoniem, « A review of solar methane reform-ing systems », International Journal of Hydrogen Energy, vol. 40, no 38, p. 12929‑12955, oct. 2015, doi: 10.1016/j.ijhydene.2015.08.005.

R. Zheng et al., « Integrated Solar Thermochemical Reaction System for Steam Me-thane Reforming », Energy Procedia, vol. 69, p. 1192‑1200, mai 2015, doi: 10.1016/j.egypro.2015.03.204.

J.-F. Peloquin et al., « Electrified steam methane reforming microreactor », International Journal of Hydrogen Energy, sept. 2023, doi: 10.1016/j.ijhydene.2023.07.343.

J.-F. Dufault, I. E. Achouri, N. Abatzouglou, N. Baridy, L. G. Fréchette, et M. Picard, « Fabrication and Demonstration of Planar Micro-Reactors for Solar Steam Methane Re-forming », in Journal of Physics: Conference Series, juill. 2018, p. 012055. doi: 10.1088/1742-6596/1052/1/012055.

D. Francoeur et al., « Solar Methane Reforming Microreactor Proof-Of-Concept With A 2X2 Array on a Full-Scale Dish », in SolarPACES Conference Proceedings, 2022. Con-sulté le: 2 mai 2024. [En ligne]. Disponible sur: https://www.tib-op.org/ojs/index.php/solarpaces/article/view/886

J. Bremer et K. Sundmacher, « Operation range extension via hot-spot control for cata-lytic CO2 methanation reactors », React. Chem. Eng., vol. 4, no 6, p. 1019‑1037, mai 2019, doi: 10.1039/C9RE00147F.

A. Arman, F. Y. Hagos, A. A. Abdullah, R. Mamat, A. R. A. Aziz, et C. K. Cheng, « Syn-gas production through steam and CO2 reforming of methane over Ni-based catalyst-A Review », IOP Conf. Ser.: Mater. Sci. Eng., vol. 736, no 4, p. 042032, janv. 2020, doi: 10.1088/1757-899X/736/4/042032.

Y. Kathiraser, U. Oemar, E. T. Saw, Z. Li, et S. Kawi, « Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts », Chemical Engineering Journal, vol. 278, p. 62‑78, oct. 2015, doi: 10.1016/j.cej.2014.11.143.

S. A. Paripatyadar, « Cyclic operation of sodium heat-pipe, solar reformers », Ph. D. Dis-sertation, Univ. of Houston, Houston, TX, United States, 1987. [En ligne]. Disponible sur: https://www.osti.gov/biblio/5079795

J. T. Richardson et S. A. Paripatyadar, « Carbon dioxide reforming of methane with sup-ported rhodium », Applied Catalysis, vol. 61, no 1, p. 293‑309, mai 1990, doi: 10.1016/S0166-9834(00)82152-1.

Y. Benguerba, L. Dehimi, M. Virginie, C. Dumas, et B. Ernst, « Modelling of methane dry reforming over Ni/Al2O3 catalyst in a fixed-bed catalytic reactor », Reac Kinet Mech Cat, vol. 114, no 1, p. 109‑119, févr. 2015, doi: 10.1007/s11144-014-0772-5.

Downloads

Published

2025-09-17

How to Cite

Dufault, J.-F., Désilets, E., Brissette, N., Braidy, N., Frechette, L., & Picard, M. (2025). Modeling of an High-Concentration Solar Reactor for Dry Methane Reforming . SolarPACES Conference Proceedings, 3. https://doi.org/10.52825/solarpaces.v3i.2449
Received 2024-09-10
Accepted 2025-04-28
Published 2025-09-17

Funding data