Development of a Small Punch Test to Evaluate Liquid Metal Embrittlement Susceptibility of 316L Stainless Steel in Liquid Sodium
DOI:
https://doi.org/10.52825/solarpaces.v3i.2465Keywords:
Liquid Sodium, 316L, Liquid Metal Embrittlement (LME)Abstract
Liquid sodium is proposed as a heat transfer fluid for solar thermal power receiver designs. It has a long history of use for heat transfer in various industries, with extensive knowledge of its impact on the structural integrity of materials at temperatures ranging from 300 ℃ to 800 ℃. However, the effects at lower temperatures are more poorly understood, which is crucial to studying solar thermal power plant systems. These systems experience diurnal cyclic temperature variation, which causes significant fluctuations in the operating temperature of liquid sodium. Several studies have demonstrated that the susceptibility of metals to Liquid Metal Embrittlement (LME) is highest at temperatures close to the melting point of the liquid metal. Therefore, this study investigates the susceptibility of 316L stainless steel, a common construction material, to sodium induced LME at temperatures between 100 ℃ to 300 ℃ using the Small Punch Test (SPT) method. The test apparatus was validated by using a known embrittling pair of Brass-Galinstan between 10 ℃ to 43 ℃, where the test revealed the expected LME susceptibility of brass. However, no evidence of LME was found in the 316L-sodium pair at temperatures up to 300 ℃.
Downloads
References
N.K. Roy, A. Das, Prospects of Renewable Energy Sources, in: M.R. Islam, N.K. Roy, S. Rahman (Eds.) Renewable Energy and the Environment, Springer Singapore, Singa-pore, 2018, pp. 1-39.
A. de la Calle, A. Bayon, J. Pye, Techno-economic assessment of a high-efficiency, low-cost solar-thermal power system with sodium receiver, phase-change material stor-age, and supercritical CO2 recompression Brayton cycle, Solar Energy, 199 (2020) 885-900.
I. Sarbu, C. Sebarchievici, A comprehensive review of thermal energy storage, Sustain-ability, 10 (2018) 191.
B. Bokelman, E.E. Michaelides, D.N. Michaelides, A Geothermal-Solar Hybrid Power Plant with Thermal Energy Storage, Energies (Basel), 13 (2020) 1018.
G. Vithalani, S. Bell, G. Will, T.A. Steinberg, R.E. Clegg, R. Haque, Investigation of Fac-tors Affecting Corrosion Mechanisms in Latent Heat Thermal Energy Storage Systems, in: SolarPACES: International Conference on Concentrating Solar Power and Chemical Energy Systems, TIB Open Publishing.
J. Coventry, M. Arjomandi, C.-A. Asselineau, A. Chinnici, C. Corsi, D. Davis, J.-S. Kim, A. Kumar, W. Lipiński, W. Logie, Development of ASTRI high-temperature solar receiv-ers, in: AIP Conference Proceedings, AIP Publishing LLC, 2017, pp. 030011.
M. Aghaeimeybodi, A. Beath, B. Webby, Techno-economic analysis of solar tower ref-erence plant, in, CSIRO, Newcastle, NSW, Australia, Technical Report, https://astri.org.au, 2017.
M. Liu, S. Riahi, R. Jacob, M. Belusko, F. Bruno, Design of sensible and latent heat thermal energy storage systems for concentrated solar power plants: Thermal perfor-mance analysis, Renewable Energy, 151 (2020) 1286-1297.
A. de la Calle, A. Bayon, J. Hinkley, J. Pye, System-level simulation of a novel solar power tower plant based on a sodium receiver, PCM storage and sCO2 power block, in: AIP Conference Proceedings, AIP Publishing LLC, 2018, pp. 210003.
M. Liu, W. Saman, F. Bruno, Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems, Renewable and Sustainable Energy Reviews, 16 (2012) 2118-2132.
L. Qi, C. Lin, Z. Xusheng, D. Bo, Z. Boyang, D. Zheng, X. Yaxuan, L. Chuan, Fabrication and thermal properties investigation of aluminium based composite phase change mate-rial for medium and high temperature thermal energy storage, Solar Energy Materials & Solar Cells, 211 (2020) 162-171.
A. Post, A. Beath, E. Sauret, R. Persky, Evaluation of power block arrangements for 100MW scale concentrated solar thermal power generation using top-down design, in: AIP Conference Proceedings, AIP Publishing LLC, 2017, pp. 030039.
S. Bell, M.A. Rhamdhani, T. Steinberg, G. Will, Aggressive corrosion of C-276 nickel superalloy in chloride/sulphate eutectic salt, Solar Energy, 227 (2021) 557-567.
J.-S. Kim, A. Kumar, C. Corsi, Design boundaries of large-scale falling particle receivers, in: AIP Conference Proceedings, AIP Publishing LLC, 2017, pp. 030029.
G. Vithalani, S. Bell, G. Will, R. Clegg, T.A. Steinberg, R. Haque, Novel method for eval-uation of stress assisted corrosion through compact tension specimens to assess material compatibility in latent heat thermal energy storage systems, Solar Energy Materials and Solar Cells, 266 (2024) 112658.
D.G. Kolman, A review of recent advances in the understanding of liquid metal embrit-tlement, Corrosion, 75 (2019) 42-57.
K. Sadananda, A.K. Vasudevan, Review of Environmentally Assisted Cracking, Metal-lurgical and materials transactions. A, Physical metallurgy and materials science, 42 (2011) 279-295.
J. Norkett, M. Dickey, V. Miller, A Review of Liquid Metal Embrittlement: Cracking Open the Disparate Mechanisms, Metallurgical and Materials Transactions A, (2021) 1-15.
I. Serre, J.-B. Vogt, Liquid metal embrittlement of T91 martensitic steel evidenced by small punch test, Nuclear engineering and design, 237 (2007) 677-685.
X. Gong, F. Hu, J. Chen, H. Wang, H. Gong, J. Xiao, H. Wang, Y. Deng, B. Pang, X. Huang, Effect of temperature on liquid metal embrittlement susceptibility of an Fe10Cr4Al ferritic alloy in contact with stagnant lead-bismuth eutectic, Journal of Nuclear Materials, 537 (2020) 152196.
H.-S. Nam, D.J. Srolovitz, Effect of material properties on liquid metal embrittlement in the Al–Ga system, Acta Materialia, 57 (2009) 1546-1553.
L. Medina-Almazan, T. Auger, D. Gorse, Liquid metal embrittlement of an austenitic 316L type and a ferritic–martensitic T91 type steel by mercury, Journal of nuclear mate-rials, 376 (2008) 312-316.
D. Kolman, R. Chavarria, Liquid-metal embrittlement of type 316L stainless steel by gal-lium as measured by elastic-plastic fracture mechanics, Corrosion, 60 (2004).
D. Kolman, R. Chavarria, Liquid-metal embrittlement of 7075 aluminum and 4340 steel compact tension specimens by gallium, Journal of testing and evaluation, 30 (2002) 452-456.
I. Proriol Serre, J.-B. Vogt, Liquid metal embrittlement sensitivity of the T91 steel in lead, in bismuth and in lead-bismuth eutectic, Journal of Nuclear Materials, 531 (2020).
I. Proriol Serre, O. Hamdane, J.-B. Vogt, Comparative study of the behavior of different highly alloyed steels in liquid sodium, Nuclear Engineering and Design, 320 (2017) 17-27.
Y. Changqing, J.B. Vogt, I. Proriol Serre, Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: the role of loading rate and of the oxygen content in the liquid met-al, Materials Science and Engineering: A (Structural Materials: Properties, Microstructure and Processing), 608 (2014) 242-248.
T. Auger, J.-B. Vogt, I.P. Serre, Liquid Metal Embrittlement, in: Mechanics-Microstructure-Corrosion Coupling, Elsevier, 2019, pp. 507-534.
O. Hamdane, I. Proriol Serre, J.B. Vogt, N. Nuns, ToF-SIMS analyses of brittle crack initiation of T91 steel by liquid sodium, Materials Chemistry and Physics, 145 (2014) 243-249.
S. Arunkumar, Overview of small punch test, Metals and Materials International, 26 (2020) 719-738.
Y. Ikeda, R. Yuan, A. Chakraborty, H. Ghassemi-Armaki, J.M. Zuo, R. Maaß, Early stages of liquid-metal embrittlement in an advanced high-strength steel, Materials Today Advances, 13 (2022) 100196.
A. E-20., Standard Test Method for Small Punch Testing of Metallic Materials, in, ASTM International West Conshohocken. PA, 2020.
R. Clegg, Continuous and discontinuous crack growth in brass embrittled by liquid galli-um, (2009).
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Stuart Bell, Gaurav Vithalani, Richard Clegg, Geoffrey Will, Theodore Steinberg, Rezwanul Haque

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-03-28
Published 2025-09-22