Design of a Natural Gas Steam Reforming Process for Hydrogen Production Powered by a Solar Furnace

Authors

DOI:

https://doi.org/10.52825/solarpaces.v3i.2493

Keywords:

Solar Furnace, Green Hydrogen, Biogas Reforming, Solar Fuels

Abstract

The work involved in this paper has been developed as part of project NEST “Network for Energy Sustainable Technologies" framed in the PE program "Green Energies for the Future". It aims to develop technologies for the conversion and use of renewable sources that should be sustainable, both from an environmental and a social point of view. In particular, the paper shows the design of a process that employs the high temperature heat produced by a solar furnace, realized at Research Centre of ENEA in Portici, to supply a system for the hydrogen production based on the steam reforming natural gas process. In the direction of the decarbonization of the chemical industry, the solar concentration-based plant appears well compatible with the endothermic stage of a reforming based plant, in which the selected hydrocarbon reacts with steam to produce a hydrogen-rich syngas (to be refined in the further purification stages). [1]

Downloads

Download data is not yet available.

References

[1] X. Y. Tang, K. R. Zhang, W. W. Yang, P. Y. Dou, “Integrated design of solar concentrator and thermochemical reactor guided by optimal solar radiation distribution”, Energy, 263, 125828, 2023, doi: https://doi.org/10.1016/J.ENERGY.2022.125828.

[2] International Energy Agency (IEA) “Global Hydrogen Review 2023”, September 2023, Publication open source available at website: www.iea.org (data accessed: 05-05-2024).

[3] K. de Kleijne, M. A. J. Huijbregts, F. Knobloch, R. van Zelm, J. P. Hilbers, H. de Coninck, S. Hanssen, “Worldwide greenhouse gas emissions of green hydrogen production and transport”, Nature Energy, 9, 1139-1152, 2024 doi: https://doi.org/10.1038/s41560-024-01563-1.

[4] A. di Nardo, M. Portarapillo, D. Russo, A. di Benedetto, “Hydrogen production via steam reforming of different fuels: thermodynamic comparison”, International Journal of Hydrogen Energy, 55, 1143–1160, 2024 doi: https://doi.org/10.1016/J.IJHYDENE.2023.11.215.

[5] T. N. From, B. Partoon, M. Rautenbach, M. Østberg, A. Bentien, K. Aasberg-Petersen, P.M. Mortensen, (2024) ”Electrified steam methane reforming of biogas for sustainable syngas manufacturing and next-generation of plant design: A pilot plant study”, Chemical Engineering Journal, 479, 147205, 2024 doi: https://doi.org/10.1016/J.CEJ.2023.147205.

[6] A. O. Oni, K. Anaya, T. Giwa, G. di Lullo, A. Kumar, “Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions”, Energy Conversion and Management, 254, 115245, 2022 doi: https://doi.org/10.1016/J.ENCONMAN.2022.115245.

[7] B. Bulfin, S. Ackermann, P. Furler, A. Steinfeld,“Thermodynamic comparison of solar methane reforming via catalytic and redox cycle routes”, Solar Energy 215, pp. 169-178, 2021 doi: https://doi.org/10.1016/j.solener.2020.11.076.

[8] N. Monnerie, P.G. Gan, M. Roeb, C. Sattler, “Methanol production using hydrogen from concentrated solar energy”, International Journal of Hydrogen Energy 45(49), pp. 26117-26125, 2020 doi: https://doi.org/10.1016/j.ijhydene.2019.12.200.

[9] H. von Storch, M. Roeb, H. Stadler, A. Bardow, B. Hoffschmidt, “On the assessment of renewable industrial processes: Case study for solar co-production of methanol and power”, Applied Energy 183, pp. 121-132, 2016 doi: https://doi.org/10.1016/j.apenergy.2016.08.141.

[10] D. Jafrancesco et al. “Mirrors array for a solar furnace: optical analysis and simulation results”, Renewable Energy 63 263-271, 2014 doi: https://doi.org/10.1016/j.renene.2013.09.006.

[11] C. Cancro et al. “ELIOSLAB project: Design and realization of a 30-kW optical power peak solar furnace”, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, September 2015, doi: 10.13140/RG.2.1.2162.9926.

[12] L. Mongibello et al. “Parametric Analysis of a High Temperature Sensible Heat Storage System by Numerical Simulations”, Journal of Solar Energy Engineering, Vol. 135 / 041010-1, November 2013, doi: https://doi.org/ 10.1115/1.4024125.

[13] R. Ben-Mansour, M.A. Haque, M. A. Habib, S. Paglieri, A. Harale, E. M. A. Mokheimer, “Effect of temperature and heat flux boundary conditions on hydrogen production in membrane-integrated steam-methane reformer”, Applied Energy, 346, 121407, 2023 doi: https://doi.org/10.1016/J.APENERGY.2023.121407.

[14] A. Ricca, V. Palma, M. Martino, E. Meloni, “Innovative catalyst design for methane steam reforming intensification”, Fuel, 198, 175–182. doi: https://doi.org/10.1016/j.fuel.2016.11.006.

[15] S. Renda, A. Ricca, V. Palma, “Coke-Resistant Rh and Ni Catalysts Supported on γ-Al2O3 and CeO2 for Biogas Oxidative Steam Reforming”, Chemistry Proceedings, 2(1), 10, 2020 doi: https://doi.org/10.3390/ECCS2020-07588.

[16] A. Ricca, V. Palma, B. Addeo, G. Paolillo, “Hydrogen production by a thermally integrated ATR based fuel processor”, Chemical Engineering Transactions, 52, 2016 doi: https://doi.org/10.3303/CET1652050.

Downloads

Published

2025-11-26

How to Cite

Cancro, C., Atrigna, M., Borriello, A., Ciniglio, G., Capaldo, V., Mongibello, L., … Ricca, A. (2025). Design of a Natural Gas Steam Reforming Process for Hydrogen Production Powered by a Solar Furnace. SolarPACES Conference Proceedings, 3. https://doi.org/10.52825/solarpaces.v3i.2493
Received 2024-09-24
Accepted 2025-08-05
Published 2025-11-26

Funding data