Heliostat Wind Load Field Measurements at the University of Adelaide Atmospheric Boundary Layer Research Facility (ABLRF)

Authors

DOI:

https://doi.org/10.52825/solarpaces.v1i.670

Keywords:

Atmospheric Boundary Layer, Field Measurements, Aerodynamic Coefficients, Lift Force, Drag Force, Integral Length Scale, Surface Roughness, Wind Loads, Turbulence

Abstract

The University of Adelaide has recently commissioned a facility dedicated to investigating the atmospheric boundary layer (ABL) for the analysis of wind loads on full-scale heliostats. Wind tunnel testing is an affordable way to analyse loads on a scaled structure before committing to a full-scale design. Scale testing however has its challenges as most cases in literature fail to correctly scale the ABL when scaling a model due to the differences between the ratio of the heliostat chord to the boundary layer depth in a wind tunnel and ABL. There is a lack of direct comparison between wind tunnel and full-scale heliostat wind loads. The Atmospheric Boundary Layer Research Facility (ABLRF) consists of arrays of ultrasonic anemometers and a 1.5 aspect ratio heliostat, mounted on a 6-axis load cell, for the comparison of loads measured in the wind tunnel with a full-scale model. Preliminary results categorise the site to have a roughness of 0.01 m to 0.03 m indicating open country farmland, when compared to standards. Comparison between coefficients of lift force, drag force, and hinge moment on the heliostat model at a single elevation angle at the ABLRF and wind tunnel models in literature verify the commissioning of the site, allowing for further in-depth analysis of wind load coefficients at varying elevation and azimuth angles.

Downloads

Download data is not yet available.

References

United Nations Climate Change, “Paris Agreement”, United Nations Framework Convention on Climate Change, https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (last accessed 2 September 2022).

A. Pfahl, J. Coventry, M. Röger, F. Wolfertstetter, J. F. Vásquez-Arango, F. Gross, M. Arjomandi, P. Schwarzbözl, M. Geiger & P. Liedke, “Progress in heliostat development”, Solar Energy, vol.152, pp.3-37, March, 2017, doi: https://doi.org/10.1016/j.solener.2017.03.029.

M. Emes, A. Jafari, M. collins, S. Wilbert, L. Zarzalejo, S, Siegrist & M. Arjomandi, “Stowing strategy for a heliostat field based on wind speed and direction”, AIP Conference Proceedings, vol.2445, 120011, May, 2022, doi: https://doi.org/10.1063/5.0085677.

J. Coventry, J. Campbell, Y. Peng Xue, C. Hall, J. Kim, J. Pye, G. Burgess, D. Lewis, G. Nathan, M. Arjomandi, W. Stein, M. Blanco, J. Barry, M. Doolan, W. Lipinski & A. Beath, “Heliostat Cost Down Scoping Study”, Australian Solar Thermal Research Initiative, 2016.

M. Emes, A. Jafari, A. Pfahl, J. Coventry, M. Arjomandi, “A review of static and dynamic heliostat wind loads”, Solar Energy, vol.225, pp.60-82, Sept., 2021, doi: https://doi.org/10.1016/j.solener.2021.07.014.

M. J. Emes, A. Jafari, J. Coventry & M. Arjomandi, “The influence of atmospheric boundary layer turbulence on the design wind loads and cost of heliostats”, Solar Energy, vol.207, pp.796-812, Sept, 2020, doi: https://doi.org/10.1016/j.solener.2020.07.022.

M. Arjomandi, M. Emes, A. Jafari, J. Yu, F. ghanadi, R. Kelso, B. Cazzolato, J. Coventry & M. Collins, “A summary of experimental studies on heliostat wind loads in a turbulent atmospheric boundary layer”, AIP Conference Proceedings, vol.2303, 030003, Dec., 2020, doi: https://doi.org/10.1063/5.0028676.

A. Jafari, F. Ghanadi, M. J. Emes, M. Arjomandi & B. S. Cazzolato, “Measurement of unsteady wind loads in a wind tunnel: Scaling of turbulence spectra”, Journal of Wind Engineering and Industrial Aerodynamics, vol.193, July, 2019, doi: https://doi.org/10.1016/j.jweia.2019.103955.

Bureau of Meteorology, 2014, Data Services, http://www.bom.gov.au/climate/data-services/ (last accessed 29.08.20).

M. J. Emes, M. Arjomandi, R. M. Kelso & F. Ghanadi, “Turbulence length scales in a low-roughness near-neutral atmospheric surface layer”, Journal of Fluid Mechanics, Oct, 2019, doi: https://doi.org/10.1080/14685248.2019.1677908.

R. B. Stull, “An introduction to boundary layer meteorology”, Kluwer Academic, 1988.

I. Marusic, J. P. Monty, M. Hultmark & A. J. Smits, “On the logarithmic region in wall turbulence”, Journal of Fluid Mechanics, vol.716, R3, 2013, doi: https://doi.org/10.1017/jfm.2012.511.

M. Metzger, B. J. McKeon & H. Homes, “The near-neutral atmospheric surface layer: turbulence and non-stationarity”, Phil. Trans. R. Soc. A, vol.365, pp 859-876, March, 2007, doi: http://doi.org/10.1098/rsta.2006.1946

A. P. van Ulden & A. A. M. Holtslag, “Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications”, Journal of Climate and Applies Meteorology, vol.24, pp.1196-1207, Nov., 1985, doi: http://doi.org/10.1175/1520-0450(1985)024<1196:EOABLP>2.0.CO;2

M. J. Emes, M. Arjomandi, R. M. Kelso & F. Ghanadi, “Turbulence length scales in a low-roughness near-neutral atmospheric surface layer”, Journal of Fluid Mechanics, Oct, 2019, doi: https://doi.org/10.1080/14685248.2019.1677908.

ESDU 85020, 1985, “Characteristics of atmospheric turbulence near the ground - Part II: single point data for strong winds (neutral atmosphere)”, Engineering Sciences Data Unit, London, UK.

A. Pfahl, M. Buselmeier & M. Zashke, “Wind loads on heliostats and photovoltaic trackers of various aspect ratios”, Solar Energy, vol.85, no.9, pp.2185-2201, Sept, 2011, doi: https://doi.org/10.1016/j.solener.2011.06.006.

J. A. Peterka, Z. Tan, B. Bienkiewicz & J. E. Cermak, “Mean and Peak Wind Load Reduction on Heliostats”, United States, 1987, doi: https://doi.org/10.2172/6048728.

M. Emes, A. Jafari, F. Ghanadi & M. Arjomandi, “Hinge and overturning moments due to unsteady heliostat pressure distributions in a turbulent atmospheric boundary layer”, Solar energy, vol.192, pp.604-617, Nov., 2019, doi: https://doi.org/10.1016/j.solener.2019.09.097.

A. Jafari, M. Emes, B. Cazzolato, F. Ghanadi & M. Arjomandi, “An experimental investigation of unsteady pressure distribution on tandem heliostats”, AIP Conference Proceedings, vol.2303, 030022, Dec, 2020, doi: https://doi.org/10.1063/5.0028678.

Downloads

Published

2023-12-08

How to Cite

Marano, M., Emes, M., Jafari, A., & Arjomandi, M. (2023). Heliostat Wind Load Field Measurements at the University of Adelaide Atmospheric Boundary Layer Research Facility (ABLRF). SolarPACES Conference Proceedings, 1. https://doi.org/10.52825/solarpaces.v1i.670

Funding data