Performance and Techno-Economic Comparison Between Solid-Particle and Molten Salt Concentrated Solar Power Systems
DOI:
https://doi.org/10.52825/solarpaces.v2i.787Keywords:
Concentrated Solar Power Systems, Solar Energy, Second-Generation, Third-Generation, Solid-Particles, Molten SaltAbstract
This work presents a comprehensive comparative analysis of second-generation (Gen2) and third-generation (Gen3) concentrated solar power (CSP) technologies. The study focuses on their techno-economic performance across three diverse geographical locations: Carrera Pinto, Patache, and Santiago, in Chile. The assessment involves detailed modelling of key subsystems, including the central receiver and power block, considering daily variations and the effects of weather conditions. The results reveal that Gen2 CSP technology can achieve competitive levelized cost of energy (LCOE) values when incorporating projected cost reductions. Notably, Gen3 CSP, using solid particles as the heat transfer medium, exhibits substantial advantages due to its operation at higher temperatures (~800°C). The study also underscores the influence of local climatic conditions on CSP performance. The findings suggest that improved cost projections can render previously less attractive sites, such as Patache and Santiago, viable options for CSP deployment, underscoring the evolving landscape of renewable energy technologies.
Downloads
References
“SunShot Vision Study | Department of Energy.” https://www.energy.gov/eere/solar/sunshot-vision-study (accessed Jan. 19, 2022).
M. Mehos et al., “Concentrating Solar Power Gen3 Demonstration Roadmap,” 2017. [Online]. Available: www.nrel.gov/publications.
I. Arias, J. Cardemil, E. Zarza, L. Valenzuela, and R. Escobar, “Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids,” Renew. Sustain. Energy Rev., vol. 168, p. 112844, Oct. 2022, doi: 10.1016/J.RSER.2022.112844.
C. K. Ho, “A review of high-temperature particle receivers for concentrating solar power,” Appl. Therm. Eng., vol. 109, pp. 958–969, Oct. 2016, doi: 10.1016/J.APPLTHERMALENG.2016.04.103.
L. F. González-Portillo, K. Albrecht, and C. K. Ho, “Techno-Economic Optimization of CSP Plants with Free-Falling Particle Receivers,” Entropy, vol. 23, no. 1. 2021. doi: 10.3390/e23010076.
C. Ho, J. Sment, K. Albrecht, B. Mills, and N. Schroeder, “Gen 3 Particle Pilot Plant (G3P3)? High-Temperature Particle System for Concentrating Solar Power (Phases 1 and 2).,” Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2021.
C. K. Ho et al., “Overview and design basis for the Gen 3 Particle Pilot Plant (G3P3) ARTICLES YOU MAY BE INTERESTED IN Overview and Design Basis for the Gen 3 Particle Pilot Plant (G3P3),” p. 30020, 2020, doi: 10.1063/5.0029216.
P. G. Gan, W. Ye, and P. John, “System Modelling and Optimization of a Particle-Based CSP System,” Aust. Natl. Univ. Canberra, Aust., 2021.
C. N. de Energ´ıa. “Informaci´on y estad´ısticas - comisi´on nacional de energ´ıa,” Accessed: Mar. 31, 2024. [Online]. Available: https://www.cne.cl/nuestros-servicios/reportes/informacion-y-estadisticas/.
M. Imran Khan, F. Asfand, and S. G. Al-Ghamdi, “Progress in technology advancements for next generation concentrated solar power using solid particle receivers,” Sustainable Energy Technologies and Assessments, vol. 54, p. 102 813, 2022, ISSN: 2213-1388. DOI: https://doi.org/10.1016/j.seta.2022.102813. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S221313882200861X.
J. M. Bright, “Solcast: Validation of a satellite-derived solar irradiance dataset,” Solar Energy, vol. 189, pp. 435–449, 2019, ISSN: 0038-092X. DOI: https://doi.org/10.1016/j.solener.2019.07.086. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0038092X19307571.
P. Scott, A. d. l. C. Alonso, J. T. Hinkley, and J. Pye, “Solartherm: A flexible modelicabased simulator for csp systems,” AIP Conference Proceedings, vol. 1850, no. 1, p. 160 026, Jun. 2017, ISSN: 0094-243X. DOI: 10.1063/1.4984560. eprint: https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/1.4984560/13748442/160026_1_online.pdf. [Online]. Available: https://doi.org/10.1063/1.4984560.
Y. Wang et al., “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Solar Energy, vol. 195, pp. 461–474, 2020, ISSN: 0038-092X. DOI: https://doi.org/10.1016/j.solener.2019.11.035. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0038092X19311338.
L. F. Gonz´alez-Portillo, V. Soria-Alcaide, K. Albrecht, C. K. Ho, and B. Mills, “Benchmark and analysis of a particle receiver 1d model,” Solar Energy, vol. 255, pp. 301–313, 2023, ISSN: 0038-092X. DOI: https://doi.org/10.1016/j.solener.2023.03.046. [Online].Available: https://www.sciencedirect.com/science/article/pii/S0038092X23002062.
A. de la Calle, A. Bayon, and J. Pye, “Techno-economic assessment of a high-efficiency,low-cost solar-thermal power system with sodium receiver, phase-change material storage,and supercritical co2 recompression brayton cycle,” Solar Energy, vol. 199, pp. 885–900, 2020, ISSN: 0038-092X. DOI: https://doi.org/10.1016/j.solener.2020.01.004. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0038092X20300049.
A. Fontalvo et al., “System-level comparison of sodium and salt systems in support of thegen3 liquids pathway,” AIP Conference Proceedings, vol. 2445, no. 1, p. 030 007, May2022, ISSN: 0094-243X. DOI: 10.1063/5.0087911. eprint: https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0087911/16203159/030007_1_online.pdf. [Online]. Available: https://doi.org/10.1063/5.0087911.
A. Castillejo-Cuberos and R. Escobar, “Understanding solar resource variability: An indepth analysis, using chile as a case of study,” Renewable and Sustainable Energy Reviews, vol. 120, p. 109 664, 2020, ISSN: 1364-0321. DOI: https://doi.org/10.1016/j.rser.2019.109664. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S136403211930869X.
C. DOE. “Gen 3 csp topic 1–phase 3 test facility down-selection criteria: Technical report.”
NREL. “Csp cost data - system advisor model - sam.,” Accessed: Mar. 31, 2023. [Online].Available: https://sam.nrel.gov/concentrating-solar-power/csp-cost-data.html.
A. Zurita, C. Mata-Torres, J. M. Cardemil, and R. A. Escobar, “Evaluating different operation
modes of a hybrid csp+pv+tes+bess plant varying the dispatch priority,” AIP ConferenceProceedings, vol. 2126, no. 1, p. 090 007, Jul. 2019, ISSN: 0094-243X. DOI: 10.1063/1.5117609. eprint: https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/1.5117609/14190260/090007_1_online.pdf. [Online]. Available: https://doi.org/10.1063/1.5117609.
A. Zurita, C. Mata-Torres, J. M. Cardemil, R. Gu´edez, and R. A. Escobar, “Multi-objective optimal design of solar power plants with storage systems according to dispatch strategy,”Energy, vol. 237, p. 121 627, 2021, ISSN: 0360-5442. DOI: https://doi.org/10.1016/j.energy.2021.121627. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360544221018752.
Data — electricity — 2023 — atb — nrel. [Online]. Available: https://atb.nrel.gov/electricity/2023/data.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Ignacio Javier Arias Olivares, Felipe G. Battisti, José Cardemil, Armando Castillejo-Cuberos, Rodrigo Escobar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-09-11
Published 2025-05-12
Funding data
-
Agencia Nacional de Investigación y Desarrollo
Grant numbers ANID PFCHA/Doctorado Nacional 2021-21210053 -
Agencia Nacional de Investigación y Desarrollo
Grant numbers ANID/FONDECYT Project 3220792 -
Agencia Nacional de Investigación y Desarrollo
Grant numbers ANID/ FONDECYT Project 3220686