Methane Assisted Chemical Looping Water Splitting Performance of Sr2FeMo0.6Ni0.4O6-δ Double Perovskite for Solar Fuels Production

Authors

DOI:

https://doi.org/10.52825/solarpaces.v2i.907

Keywords:

Chemical Looping, Perovskite, Exsolution, Water Splitting, Solar Fuels, CH4 Reforming

Abstract

In this work, we performed a preliminary investigation on the redox behaviour of Sr2FeMo0.6Ni0.4O6-δ (SFMN) double perovskite in H2-H2O and CH4-H2O redox cycles in order to explore the potential use of this oxide as an Oxygen Carrier (OC) in fuel-assisted Chemical Looping Water Splitting (CLWS) processes driven by concentrated solar energy. The results were compared with our previous findings on the Reverse Water Gas Shift Chemical Looping (RWGS-CL) reaction. The improvement in performance due to the bimetallic exsolution on the OC surface is observed. This OC exhibits interesting activity and stability over CH4-assisted CLWS cycling. Future investigations are planned to examine the structural transformations that might impact the redox behaviour of this material in water splitting processes.

Downloads

Download data is not yet available.

References

1. P. T. Krenzke, J. R. Fosheim, J. H. Davidson, «Solar fuels via chemical-looping reforming», Solar Energy, vol. 156, pp. 48–72, Nov. 2017, doi: https://doi.org/10.1016/j.solener.2017.05.095.

2. L.-S. Fan, L. Zeng, W. Wang, S. Luo, «Chemical looping processes for CO2 capture and carbonaceous fuel conversion – prospect and opportunity», Energy Environ. Sci., vol. 5, fasc. 6, pp. 7254–7280, May 2012, doi: https://doi.org/10.1039/C2EE03198A.

3. D. J. Wilhelm, D. R. Simbeck, A. D. Karp, R. L. Dickenson, «Syngas production for gas-to-liquids applications: technologies, issues and outlook», Fuel Processing Tech-nology, vol. 71, fasc. 1, pp. 139–148, Jun. 2001, doi: https://doi.org/10.1016/S0378-3820(01)00140-0.

4. P. Cho, T. Mattisson, A. Lyngfelt, «Defluidization Conditions for a Fluidized Bed of Iron Oxide-, Nickel Oxide-, and Manganese Oxide-Containing Oxygen Carriers for Chemical-Looping Combustion», Ind. Eng. Chem. Res., vol. 45, fasc. 3, pp. 968–977, Feb. 2006, doi: https://doi.org/10.1021/ie050484d.

5. G. Voitic, V. Hacker, «Recent advancements in chemical looping water splitting for the production of hydrogen», RSC Adv., vol. 6, fasc. 100, pp. 98267–98296, Oct. 2016, doi: https://doi.org/10.1039/C6RA21180A.

6. L. Neal, A. Shafiefarhood, F. Li, «Effect of core and shell compositions on Me-Ox@LaySr1−yFeO3 core–shell redox catalysts for chemical looping reforming of methane», Applied Energy, vol. 157, pp. 391–398, Nov. 2015, doi: https://doi.org/10.1016/j.apenergy.2015.06.028.

7. S.-K. Otto, K. Kousi, D. Neagu, L. Bekris, J. Janek, I. S. Metcalfe, «Exsolved Nickel Nanoparticles Acting as Oxygen Storage Reservoirs and Active Sites for Redox CH4 Conversion», ACS Appl. Energy Mater., vol. 2, fasc. 10, pp. 7288–7298, Oct. 2019, doi: https://doi.org/10.1021/acsaem.9b01267.

8. H. Poelman, V. V. Galvita, «Intensification of Chemical Looping Processes by Catalyst Assistance and Combination», Catalysts, vol. 11, fasc. 2, Art. fasc. 2, Feb. 2021, doi: https://doi.org/10.3390/catal11020266.

9. A. J. Carrillo, J. M. Serra, «Exploring the Stability of Fe–Ni Alloy Nanoparticles Exsolved from Double-Layered Perovskites for Dry Reforming of Methane», Catalysts, vol. 11, fasc. 6, p. 741, Jun. 2021, doi: https://doi.org/10.3390/catal11060741.

10. D. Neagu et al., «Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution», Nat Commun, vol. 6, fasc. 1, Art. fasc. 1, Sep. 2015, doi: https://doi.org/10.1038/ncomms9120.

11. F. Orsini et al., «Exsolution-enhanced reverse water-gas shift chemical looping activity of Sr2FeMo0.6Ni0.4O6-δ double perovskite», Chemical Engineering Journal, p. 146083, Sep. 2023, doi: https://doi.org/10.1016/j.cej.2023.146083.

12. Z. Zhao, M. Uddi, N. Tsvetkov, B. Yildiz, A. F. Ghoniem, «Redox Kinetics Study of Fuel Reduced Ceria for Chemical-Looping Water Splitting», J. Phys. Chem. C, vol. 120, fasc. 30, pp. 16271–16289, Aug. 2016, doi: https://doi.org/10.1021/acs.jpcc.6b01847.

13. A. Felli et al., «Sr 2 FeNi 0.4 Mo 0.6 O 6−δ Evolution for SOFC and SOEC Applications», J. Electrochem. Soc., vol. 170, fasc. 11, p. 114511, Nov. 2023, doi: https://doi.org/10.1149/1945-7111/ad06e7.

14. J. Yang et al., «On the ensemble requirement of fully selective chemical looping methane partial oxidation over La-Fe-based perovskites», Applied Catalysis B: Environmental, vol. 301, p. 120788, Feb. 2022, doi: https://doi.org/10.1016/j.apcatb.2021.120788.

15. O. Mihai, D. Chen, A. Holmen, «Chemical looping methane partial oxidation: The effect of the crystal size and O content of LaFeO3», Journal of Catalysis, vol. 293, pp. 175–185, Sep. 2012, doi: https://doi.org/10.1016/j.jcat.2012.06.022.

16. Q. Shen et al., «Effect of Regeneration Period on the Selectivity of Synthesis Gas of Ba-Hexaaluminates in Chemical Looping Partial Oxidation of Methane», ACS Catal., vol. 9, fasc. 1, pp. 722–731, Jan. 2019, doi: https://doi.org/10.1021/acscatal.8b03855.

17. Y. Liu et al., «Near 100% CO selectivity in nanoscaled iron-based oxygen carriers for chemical looping methane partial oxidation», Nat. Commun., vol. 10, fasc. 1, Art. fasc. 1, Dec. 2019, doi: https://doi.org/10.1038/s41467-019-13560-0.

18. S. Das, A. Biswas, C. S. Tiwary, M. Paliwal, «Hydrogen production using chemical looping technology: A review with emphasis on H2 yield of various oxygen carriers», International Journal of Hydrogen Energy, vol. 47, fasc. 66, pp. 28322–28352, Aug. 2022, doi: https://doi.org/10.1016/j.ijhydene.2022.06.170.

19. W. Chang et al., «Recent Advances of Oxygen Carriers for Hydrogen Production via Chemical Looping Water-Splitting», Catalysts, vol. 13, fasc. 2, p. 279, Jan. 2023, doi: https://doi.org/10.3390/catal13020279.

20. Z. Du et al., «High-Performance Anode Material Sr2FeMo0.65Ni0.35O6−δ with In Situ Exsolved Nanoparticle Catalyst», ACS Nano, vol. 10, fasc. 9, pp. 8660–8669, Sep. 2016, doi: https://doi.org/10.1021/acsnano.6b03979.

21. Z. Sun et al., «Recent advances in exsolved perovskite oxide construction: exsolution theory, modulation, challenges, and prospects», J. Mater. Chem. A, vol. 11, fasc. 34, pp. 17961–17976, Aug. 2023, doi: https://doi.org/10.1039/D3TA03292B.

22. D. Neagu et al., «In Situ Observation of Nanoparticle Exsolution from Perovskite Oxides: From Atomic Scale Mechanistic Insight to Nanostructure Tailoring», ACS Nano, vol. 13, fasc. 11, pp. 12996–13005, Nov. 2019, doi: https://doi.org/10.1021/acsnano.9b05652.

Downloads

Published

2024-09-16

How to Cite

Strazzolini, A., Orsini, F., Cannone, S. F., Ferrero, D., Boaro, M., Llorca, J., … Ghoniem, A. (2024). Methane Assisted Chemical Looping Water Splitting Performance of Sr2FeMo0.6Ni0.4O6-δ Double Perovskite for Solar Fuels Production. SolarPACES Conference Proceedings, 2. https://doi.org/10.52825/solarpaces.v2i.907
Received 2023-10-20
Accepted 2024-07-12
Published 2024-09-16