Agentic Recommender System Concept for Sustainable Knowledge Management

AI-Enabled Knowledge Management in Companies

Authors

DOI:

https://doi.org/10.52825/th-wildau-ensp.v2i.2944

Keywords:

Knowledge Management, Graph Database, Semantic Search, Recommendation Systems

Abstract

Companies face considerable challenges in retaining, utilising and passing on key knowledge. Demographic change, increasing employee turnover and growing organisational complexity are making traditional documentation and exchange processes, which rely heavily on employee participation, more difficult. With the help of generative AI and agentic recommender systems, these obstacles can be overcome by capturing important knowledge ‘on the fly’ and in a largely automated manner. A central element here is the combination of semantic embeddings, a graph database and specialised AI agents that analyse documents and chat histories, provide employees with targeted support in the form of suggestions and thus continuously update knowledge. This creates an effective knowledge culture with low barriers to use thanks to minimal additional effort for human users.

Downloads

Download data is not yet available.

References

E. Latniak and J. Hentrich, “Herausforderungen des demografischen wandels für fertigende Betriebe und deren Beschäftigte,” in Springer, 2013, pp. 9–23.

E. Commission, The impact of demographic change—in a changing environment, 2023.

K. D. Solutions, Wissensmanagement im Mittelstand: Mit Dokumentenmanagement Wissen besser verfügbar machen, Whitepaper, 2018.

G. Schuh and V. Stich, Enterprise-Integration: Auf dem Weg zum kollaborativen Unternehmen. Springer, 2014.

S. I. Ein Sektor mit Zukunft, “Informationswirtschaft: Ein Sektor mit Zukunft: Symposium; 4.-5. september 2003, Wien, ¨Österreich,” Ges. für Informatik, 2003.

M. John, S. Schmidt, and B. Decker, “Community-management in Unternehmen mit Wiki-und Weblogtechnologien,” in Gemeinschaften in Neuen Medien, 2005.

Y. Rui et al., “Knowledge mining: A cross-disciplinary survey,” Machine Intelligence Research, vol. 19, no. 2, pp. 89–114, 2022.

P. Markellou, M. Rigou, and S. Sirmakessis, “Knowledge Mining: A Quantitative Synthesis of Research Results and Findings,” in Studies in Fuzziness and Soft Computing. Springer Berlin Heidelberg, 2005, pp. 1–11, ISBN: 9783540250708.

W. ”Bünnagel, “Angewandte künstliche intelligenz,” in Künstliche Intelligenz und Unternehmenswissen: Betriebliches Wissensmanagement auf morgen ausrichten. Springer Berlin Heidelberg, 2024, pp. 179–212, ISBN: 978-3-662-68779-6.

M. Brachman, A. El-Ashry, C. Dugan, and W. Geyer, “How knowledge workers use and want to use llms in an enterprise context,” in Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, 2024, pp. 1–8.

P. Ritala, M. Ruokonen, and L. Ramaul, “Transforming boundaries: How does chatgpt change knowledge work?” Journal of Business Strategy, vol. 45, no. 3, pp. 214–220, 2023.

J. Retkowsky, E. Hafermalz, and M. Huysman, “Managing a chatgpt-empowered workforce: Understanding its affordances and side effects,” Business Horizons, vol. 67, no. 5, pp. 511–523, 2024.

N. Shakked and Z. Whitney, “Experimental evidence on the productivity effects of generative artificial intelligence,” Science, 2023.

R. Ulfsnes, N. B. Moe, V. Stray, and M. Skarpen, “Transforming Software Development with Generative AI: Empirical Insights on Collaboration and Workflow,” arXiv.org, 2024.

R. Laavanya, R. P., and R. Mika, “Creational and conversational AI affordances: How the new breed of chatbots are revolutionizing the knowledge industries,” Business Horizons, 2024.

S. Wilbers, J. Gröpler, B. Prell, and J. Reiff-Stephan, “Overall writing effectiveness: Exploring students’ use of llms, pushing the limits of automated text generation,” in International Conference on Smart Technologies & Education, Springer, 2024, pp. 11–22.

D. Daniel-Florin and T. Emanuela, “Knowledge Workers and the Rise of Artificial Intelligence: Navigating New Challenges,” SEA - Practical Application of Science, 2024.

A. Woodruff, R. Shelby, P. G. Kelley, S. Rousso-Schindler, J. Smith-Loud, and L. Wilcox, “How knowledge workers think generative ai will (not) transform their industries,” in Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, 2024, pp. 1–26.

I. Guy, N. Zwerdling, I. Ronen, D. Carmel, and E. Uziel, “Social media recommendation based on people and tags,” in Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2010.

I. Ronen, I. Guy, E. Kravi, and M. Barnea, “Recommending social media content to community owners,” in Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2014.

L. Chen et al., “Collaboration-aware hybrid learning for knowledge development prediction,” in The Web Conference, 2024.

K. Christidis, G. Mentzas, and D. Apostolou, “Using latent topics to enhance search and recommendation in enterprise social software,” Expert Systems with Applications, vol. 39, no. 10, pp. 9297–9307, 2012.

C.-H. Lai and D.-R. Liu, “Integrating knowledge flow mining and collaborative filtering to support document recommendation,” Journal of Systems and Software, vol. 82, no. 12, pp. 2023–2037, 2009.

M. Karimzadehgan and C. Zhai, “A learning approach to optimizing exploration–exploitation tradeoff in relevance feedback,” Information retrieval, vol. 16, pp. 307–330, 2013.

T. Forte, Building a second brain: A proven method to organize your digital life and unlock your creative potential. Simon and Schuster, 2022.

N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.

F. Xia, J. Liu, H. Nie, Y. Fu, L. Wan, and X. Kong, “Random walks: A review of algorithms and applications,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 4, no. 2, pp. 95–107, 2019.

H. Chen, S. F. Sultan, Y. Tian, M. Chen, and S. Skiena, Fast and accurate network embeddings via very sparse random projection, 2019. arXiv: 1908.11512 [cs.SI].

L. Bainbridge, “Ironies of automation,” in Analysis, design and evaluation of man–machine systems, Elsevier, 1983, pp. 129–135.

Downloads

Published

2025-09-12

How to Cite

Wilbers, S., van de Sand, R., Prell, B., & Reiff-Stephan, J. (2025). Agentic Recommender System Concept for Sustainable Knowledge Management: AI-Enabled Knowledge Management in Companies. TH Wildau Engineering and Natural Sciences Proceedings , 2. https://doi.org/10.52825/th-wildau-ensp.v2i.2944

Conference Proceedings Volume

Section

Contributions to the Wildau Conference on Artificial Intelligence 2025