DePIN for Increasing the Resilience of EWF Infrastructures
Systematisation and Potential for Brandenburg
DOI:
https://doi.org/10.52825/th-wildau-ensp.v2i.2945Keywords:
Decentralized Physical Infrastructure Networks, Resilience, Energy-Water-Food Nexus, Artificial Intelligence, BlockchainAbstract
Critical infrastructures in the areas of energy, water and food (EWF) require new resilience concepts in the face of increasing global challenges. This article examines how decentralised physical infrastructure networks (DePIN) can contribute to increasing the resilience of EWF systems by combining blockchain, the Internet of Things and artificial intelligence. The focus is on the Brandenburg region, where the Resilient Infrastructure Technology Suite (RITS) project serves as a practical example of decentralised infrastructure solutions. The results show that DePIN approaches reduce single points of failure and enable a faster, autonomous response to disruptions, thereby sustainably improving regional security of supply.
Downloads
References
Arévalo, P., & Jurado, F. „Impact of artificial intelligence on the planning and operation of distributed energy systems in smart grids.“ Energies, 17(17), 4501. (2024).
Bassey, K. E., Rajput, S. A., & Oyewale, K. „Peer-to-peer energy trading: Innovations, regulatory challenges, and the future of decentralized energy systems.“ World Journal of Advanced Research and Reviews, 24, 172-186. (2024).
Haji, M., Namany, S., & Al-Ansari, T. „Strengthening resilience: decentralized decision-making and multi-criteria analysis in the energy-water-food nexus systems.“ Frontiers in Sustainability, 5, 1367931. (2024).
Hammad, A., & Abu-Zaid, R. „Applications of AI in Decentralized Computing Systems: Harnessing Artificial Intelligence for Enhanced Scalability, Efficiency, and Autonomous Decision-Making in Distributed Architectures.“ Applied Research in Artificial Intelligence and Cloud Computing, 7, 161-187. (2024).
Hasankhani, M., van Engelen, J., Celik, S., & Carel Diehl, J. „Emerging decentralized infrastructure networks.“ (2023).
Helmrich, A., Markolf, S., Li, R., Carvalhaes, T., Kim, Y., Bondank, E., & Chester, M. „Centralization and decentralization for resilient infrastructure and complexity.“ Environmental Research: Infrastructure and Sustainability, 1(2), 021001. (2021).
Jiang, S., Jakobsen, K., Bueie, J., Li, J., & Haro, P. H. „A tertiary review on blockchain and sustainability with focus on Sustainable Development Goals.“ IEEE Access, 10, 114975-115006. (2022).
Li, K., Lee, J. Y., & Gharehgozli, A. „Blockchain in food supply chains: a literature review and synthesis analysis of platforms, benefits and challenges.“ International Journal of Production Research, 61(11), 3527-3546. (2023).
Lin, Z., Wang, T., Shi, L., Zhang, S., & Cao, B. „Decentralized Physical Infrastructure Networks (DePIN): Challenges and Opportunities.“ IEEE Network. (2024).
MLUK Brandenburg. „Innovationsförderung im Bereich kritischer Infrastrukturen in Brandenburg.“https://mwaek.brandenburg.de/de/innovationsf%C3%B6rderung/bb1.c.478820.de (2023), (zuletzt zugegriffen am 27.02.2025)
Seven, S., Yoldas, Y., Soran, A., Yalcin Alkan, G., Jung, J., Ustun, T. S., & Onen, A. „Energy trading on a peer-to-peer basis between virtual power plants using decentralized finance instruments.“ Sustainability, 14(20), 13286. (2022).
Smirnov, O., Sydorenko, V., Aleksander, M., Zhyharevych, O., & Yenchev, S. „Simulation of the cloud IoT-based monitoring system for critical infrastructures.“ In CMiGIN (pp. 256-265). (2022).
Voßschmidt, S., & Karsten, A. „Resilienz und kritische Infrastrukturen.“ (2020).
Zeng, H., Dhiman, G., Sharma, A., Sharma, A., & Tselykh, A. „An IoT and Blockchain‐based approach for the smart water management system in agriculture.“ Expert Systems, 40(4), e12892. (2023).
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Bastian Halecker, Robert Henker

This work is licensed under a Creative Commons Attribution 4.0 International License.