Simulation Study of Perovskite Cell Performance in Real Conditions of Sub-Saharan Africa




PV module, perovskite, simulation, extraction, performance ratio


Perovskite is certainly the material of the future of photovoltaics for terrestrial applications. With high efficiencies and advances in stability, perovskite solar cells, modules and mini-modules have already made their appearance in the laboratory and are being tested under real-world conditions to evaluate their real performance. In our study, we predict the performance of perovskite-based photovoltaic panel technology under the conditions of the Sub-Saharan African region by simulation. We started from the current-voltage characteristic of a real perovskite-based module to extract the cell parameters through MATLAB analysis software. These parameters were used to model a cell and then a module in the LTSpice XVII software for simulation. The impact of temperature is studied to evaluate the performance ratio (PR) of a clear day. This study allowed us to evaluate the PR of the perovskite solar module. Displaying PR reaching 90%, perovskite is a future candidate with high potential in the list of the most suitable technologies for our sub-region.


Download data is not yet available.


K. Jemli, « Synthése et auto-assemblage de molécules de pérovskite pour la photonique et le marquage », Université Paris-Saclay; Faculté des Sciences de Bizerte (Tunisie), 2016.

M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, et X. Hao, « Solar cell efficiency tables (version 57) », Progress in Photovoltaics: Research and Applications, vol. 29, no 1, p. 3‑15, janv. 2021, doi: 10.1002/pip.3371.

C. Longeaud, « Study of transport parameters and defect states in thin film perovskites under different environments − air or vacuum − and after light-soaking », EPJ Photovolt., vol. 11, p. 5, 2020, doi: 10.1051/epjpv/2019009.

S. Sonmezoglu et S. Akin, « Suppression of the interface-dependent nonradiative recombination by using 2-methylbenzimidazole as interlayer for highly efficient and stable perovskite solar cells », Nano Energy, vol. 76, p. 105127, 2020.

M. Neophytou et al., « Enhancing the charge extraction and stability of perovskite solar cells using strontium titanate (SrTiO3) electron transport layer », ACS Applied Energy Materials, vol. 2, no 11, p. 8090‑8097, 2019.

A. Ren et al., « Efficient Perovskite Solar Modules with Minimized Nonradiative Recombination and Local Carrier Transport Losses », Joule, vol. 4, no 6, p. 1263‑1277, 2020.

M. A. Green, E. D. Dunlop, J. Hohl‐Ebinger, M. Yoshita, N. Kopidakis, et A. W. Ho‐Baillie, « Solar cell efficiency tables (Version 55) », Progress in Photovoltaics: Research and Applications, vol. 28, no 1, p. 3‑15, 2020.

K. N’Detigma, D. Djicknoum, M. S. Y., D. Arouna, et S. M. Amadou, « Module parameter extraction and simulation with LTSpice software model in sub-Saharan outdoor conditions », Afr. J. Environ. Sci. Technol., vol. 12, no 12, p. 523‑531, déc. 2018, doi: 10.5897/AJEST2018.2566.

H. Ibrahim et N. Anani, « Evaluation of Analytical Methods for Parameter Extraction of PV modules », Energy Procedia, vol. 134, p. 69‑78, oct. 2017, doi: 10.1016/j.egypro.2017.09.601.

W. Tress et al., « Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions », Nature energy, vol. 4, no 7, p. 568‑574, 2019.

N. Kata, D. Diouf, A. Darga, et A. Seidou Maiga, « The effect of the recombination mechanisms location on the temperature sensitivity of thin-film photovoltaic cells », EPJ Photovolt., vol. 10, 2019, doi: 10.1051/epjpv/2019008.

J. A. Schwenzer et al., « Temperature variation-induced performance decline of perovskite solar cells », ACS applied materials & interfaces, vol. 10, no 19, p. 16390‑16399, 2018.

M. Jošt et al., « Perovskite solar cells go outdoors: field testing and temperature effects on energy yield », Advanced Energy Materials, vol. 10, no 25, p. 2000454, 2020.