Advances in Conversion Efficiency and Thermal Stability of the Perovskite-Based Solar Cell: Review

Authors

DOI:

https://doi.org/10.52825/thwildauensp.v1i.31

Keywords:

perovskite solar cell, review, thermal stability

Abstract

This paper presents a small review on the technological advances made on the perovskite-based solar cell. Through this summary of the results of the research on perovskite, the reader will have an overview of the perovskite material, the different structures of a perovskite solar cell, and the opto-electrical properties of such cell as well as the electrical models used in its simulation. Finally, the paper presents in a very brief way the challenges that this technology will have to overcome before finding its place in the photovoltaic market.

Downloads

Download data is not yet available.

References

Habibi M, Zabihi F, Ahmadian-Yazdi MR, Eslamian M. Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells. Renewable and Sustainable Energy Reviews. 2016 09;62:1012-1031. https://doi.org/10.1016/

Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nature Photonics. 2014 06 27;8(7):506-514. https://doi.org/10.1038/nphoton.2014.134.

Pitchaiya S, Natarajan M, Santhanam A, Asokan V, Yuvapragasam A, Madurai Ramakrishnan V, Palanisamy SE, Sundaram S, Velauthapillai D. A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arabian Journal of Chemistry. 2020 01;13(1):2526-2557. https://doi.org/10.1016/j.arabjc.2018.06.006.

Wang Z, McMeekin DP, Sakai N, van Reenen S, Wojciechowski K, Patel JB, Johnston MB, Snaith HJ. Efficient and Air-Stable Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells with n-Doped Organic Electron Extraction Layers. Advanced Materials. 2016 Dec 01;29(5):1604186. https://doi.org/10.1002/adma.201604186.

Kim G, Jang H, Yoon YJ, Jeong J, Park SY, Walker B, Jeon I, Jo Y, Yoon H, Kim M, Baek J, Kim DS, Kim JY. Fluorine Functionalized Graphene Nano Platelets for Highly Stable Inverted Perovskite Solar Cells. Nano Letters. 2017 09 14;17(10):6385-6390. https://doi.org/10.1021/acs.nanolett.7b03225

Shin SS, Yeom EJ, Yang WS, Hur S, Kim MG, Im J, Seo J, Noh JH, Seok SI. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science. 2017 03 30;356(6334):167-171. https://doi.org/10.1126/science.aam6620

K Aitola K, Domanski K, Correa-Baena J, Sveinbjörnsson K, Saliba M, Abate A, Grätzel M, Kauppinen E, Johansson EMJ, Tress W, Hagfeldt A, Boschloo G. High Temperature-Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact. Advanced Materials. 2017 02 23;29(17):1606398. https://doi.org/10.1002/adma.201606398

Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin MK. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications. 2017 06 01;8(1). https://doi.org/10.1038/ncomms15684

Duong T, Wu Y, Shen H, Peng J, Zhao S, Wu N, Lockrey M, White T, Weber K, Catchpole K. Light and elevated temperature induced degradation (LeTID) in perovskite solar cells and development of stable semi-transparent cells. Solar Energy Materials and Solar Cells. 2018 Dec;188:27-36. https://doi.org/10.1016/j.solmat.2018.08.017

Jeong M, Choi IW, Go EM, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi HW, Lee J, Bae J, Kwak SK, Kim DS, Yang C. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science. 2020 09 24;369(6511):1615-1620. https://doi.org/10.1126/science.abb7167

Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials. 2014 07 06;13(9):897-903. https://doi.org/10.1038/nmat4014

Nie W, Tsai H, Asadpour R, Blancon J, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang H, Mohite AD. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015 01 29;347(6221):522-525. https://doi.org/10.1126/science.aaa0472

Kong L, Ma J, Huang H, Zhang R. Crystallization of magnesium niobate from mechanochemically derived amorphous phase. Journal of Alloys and Compounds. 2002 06;340(1-2):L1-L4. https://doi.org/10.1016/s0925-8388(02)00003-8

Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science. 2015 05 21;348(6240):1234-1237. https://doi.org/10.1126/science.aaa9272

Bi W, Wu Y, Chen C, Zhou D, Song Z, Li D, Chen G, Dai Q, Zhu Y, Song H. Dye Sensitization and Local Surface Plasmon Resonance-Enhanced Upconversion Luminescence for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces. 2020 05 07;12(22):24737-24746. https://doi.org/10.1021/acsami.0c04258

Wu Y, Bi W, Shi Z, Zhuang X, Song Z, Liu S, Chen C, Xu L, Dai Q, Song H. Unraveling the Dual-Functional Mechanism of Light Absorption and Hole Transport of Cu2CdxZn1–xSnS4 for Achieving Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces. 2020 03 20;12(15):17509-17518. https://doi.org/10.1021/acsami.0c00607

Ezealigo BN, Nwanya AC, Ezugwu S, Offiah S, Obi D, Osuji RU, Bucher R, Maaza M, Ejikeme P, Ezema FI. Method to control the optical properties: Band gap energy of mixed halide Organolead perovskites. Arabian Journal of Chemistry. 2020 01;13(1):988-997. https://doi.org/10.1016/j.arabjc.2017.09.002

Liu Y, Zhang Y, Yang Z, Yang D, Ren X, Pang L, Liu SF. Thinness- and Shape-Controlled Growth for Ultrathin Single-Crystalline Perovskite Wafers for Mass Production of Superior Photoelectronic Devices. Advanced Materials. 2016 08 29;28(41):9204-9209. https://doi.org/10.1002/adma.201601995

Liu F, Zhu J, Wei J, Li Y, Lv M, Yang S, Zhang B, Yao J, Dai S. Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells. Applied Physics Letters. 2014 06 23;104(25):253508. https://doi.org/10.1063/1.4885367

Ezealigo BN, Nwanya AC, Ezugwu S, Offiah S, Obi D, Osuji RU, Bucher R, Maaza M, Ejikeme P, Ezema FI. Method to control the optical properties: Band gap energy of mixed halide Organolead perovskites. Arabian Journal of Chemistry. 2020 01;13(1):988-997. https://doi.org/10.1016/j.arabjc.2017.09.002.

Aharon S, Cohen BE, Etgar L. Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell. The Journal of Physical Chemistry C. 2014 05;118(30):17160-17165. https://doi.org/10.1021/jp5023407

Miyano K, Tripathi N, Yanagida M, Shirai Y. Lead Halide Perovskite Photovoltaic as a Model p–i–n Diode. Accounts of Chemical Research. 2016 01 12;49(2):303-310. https://doi.org/10.1021/acs.accounts.5b00436

Cappelletti M, Casas G, Cédola A, Peltzer y Blancá E, Marí Soucase B. Study of the reverse saturation current and series resistance of p-p-n perovskite solar cells using the single and double-diode models. Superlattices and Microstructures. 2018 Nov;123:338-348. https://doi.org/10.1016/j.spmi.2018.09.023

Reza MN, Mominuzzaman SM. Extraction of Equivalent Circuit Parameters for CNT incorporated Perovskite Solar Cells Using Newton-Raphson Method. 2018 10th International Conference on Electrical and Computer Engineering (ICECE). 2018 10th International Conference on Electrical and Computer Engineering (ICECE). 2018 Dec. https://doi.org/10.1109/icece.2018.8636738

Ebadi F, Aryanpour M, Mohammadpour R, Taghavinia N. Coupled Ionic-Electronic Equivalent Circuit to Describe Asymmetric Rise and Decay of Photovoltage Profile in Perovskite Solar Cells. Scientific Reports. 2019 08 19;9(1). https://doi.org/10.1038/s41598-019-48505-6

Huang G, Yu F, Xu C. An Analytical Solution to Lumped Parameter Equivalent Circuit Model of Organic Solar Cells. Crystals. 2018 05 18;8(5):224. https://doi.org/10.3390/cryst8050224

Zhang J, Tan HS, Guo X, Facchetti A, Yan H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nature Energy. 2018 07 02;3(9):720-731. https://doi.org/10.1038/s41560-018-0181-5

Jeon NJ, Lee HG, Kim YC, Seo J, Noh JH, Lee J, Seok SI. o-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic–Organic Hybrid Perovskite Solar Cells. Journal of the American Chemical Society. 2014 05 23;136(22):7837-7840. https://doi.org/10.1021/ja502824c

Jeon NJ, Na H, Jung EH, Yang T, Lee YG, Kim G, Shin H, Il Seok S, Lee J, Seo J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy. 2018 07 09;3(8):682-689. https://doi.org/10.1038/s41560-018-0200-6

Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena J, Gao P, Scopelliti R, Mosconi E, Dahmen K, De Angelis F, Abate A, Hagfeldt A, Pozzi G, Graetzel M, Nazeeruddin MK. A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy. 2016 01 18;1(2). https://doi.org/10.1038/nenergy.2015.17

Głowienka D, Zhang D, Di Giacomo F, Najafi M, Veenstra S, Szmytkowski J, Galagan Y. Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3. Nano Energy. 2020 01;67:104186. https://doi.org/10.1016/j.nanoen.2019.104186

Wu Y, Gao Y, Zhuang X, Shi Z, Bi W, Liu S, Song Z, Chen C, Bai X, Xu L, Dai Q, Song H. Highly efficient near-infrared hybrid perovskite solar cells by integrating with a novel organic bulk-heterojunction. Nano Energy. 2020 Nov;77:105181. https://doi.org/10.1016/j.nanoen.2020.105181

Gkini KE, Antoniadou M, Balis N, Kaltzoglou A, Kontos AG, Falaras P. Mixing cations and halide anions in perovskite solar cells. Materials Today: Proceedings. 2019;19:73-78. https://doi.org/10.1016/j.matpr.2019.07.660

Vidyasagar CC, Muñoz Flores BM, Jiménez Pérez VM. Recent Advances in Synthesis and Properties of Hybrid Halide Perovskites for Photovoltaics. Nano-Micro Letters. 2018 09 24;10(4). https://doi.org/10.1007/s40820-018-0221-5

Downloads

Published

2021-06-15