Study of the Decentralized Electrification by a Micro-Wind Power Plant: Case of Ahouandji Locality in Southern Benin




Electrical energy, Weibull distribution, Power law, Wind turbine, Kilowatt-hour price


Access to energy is a major challenge for the socio-economic well-being of populations. In Benin, the electric energy sector is characterized by a low rate of access to energy in rural area (6.6% in 2017) and dependence on the outside at 40%. In the village of Ahouandji (Ouidah commune) located on the coast of Benin and far from the conventional network, the surface winds are regular and permanent. However, this wind resource is untapped despite the unavailability of electrical energy. To cope with this difficulty, this study therefore addresses the design and sizing of a micro-wind power plant to supply the region. Wind data at 10 m above the ground recorded over the period January 1981 to December 2014 by the Agency for the Safety of Air Navigation in Africa (ASECNA) were used. Based on the socio-economic study of the locality and the statistical study of the winds by the Weibull distribution and the power law, the sizing of the wind power plant components was carried out. The economic study of the system then made it possible to assess the profitability of the project. It emerges from this study that at 25 m above the ground the Weibull shape parameter is estimated at 2.94 and the scale parameter at 6.07 m/s. The most frequent speed is estimated at 5 m/s and the one giving the maximum energy at 10.2 m/s. The micro-power plant is made up of two wind turbines with a nominal power of 29.7 kW for a daily production estimated at 355 kWh, a three-phase converter rated at 30 kW, 06 inverters/chargers with a power of 11.5 kW and 120 batteries (3000Ah/2V). The selling price of kilowatt-hour estimated at 0.17 euro/kWh is quite competitive. The establishment of this micro-wind power plant is therefore an asset for these rural populations.


Download data is not yet available.


Soulouknga MH, Oyedepo SO, Doka SY, Kofane TC. Assessment of Wind Energy Potential in the Sudanese Zone in Chad. Energy and Power Engineering. 2017;09(07):386-402.

Donnou H, Akpo A, Nonfodji G, Kounouhewa B. Variability of Onshore Wind Energy Potential in the 60 m above the Ground under Convective Atmosphere in Southern Benin. American Journal of Energy Research. 2019 July;7(1):19-30.

Shawon M, El Chaar L, Lamont L. Overview of wind energy and its cost in the Middle East. Sustainable Energy Technologies and Assessments. 2013 06;2:1-11.

Qolipour M, Mostafaeipour A, Rezaei M. A mathematical model for simultaneous optimization of renewable electricity price and construction of new wind power plants (case study: Kermanshah). International Journal of Energy and Environmental Engineering. 2017 Nov 29;9(1):71-80.

Wind Power Monthly. biggest-turbines. Accessed 2017 December 15.

Global Wind Energy Council. content/uploads/2018/02/Global_Cumulative_Installed_Wind_Capacity_2001-2017.jpg. Accessed 2017 December 15.

Global Wind Report 2018. Accessed 2019 April.

Okeniyi JO, Ohunakin OS, Okeniyi ET. Assessments of Wind-Energy Potential in Selected Sites from Three Geopolitical Zones in Nigeria: Implications for Renewable/Sustainable Rural Electrification. The Scientific World Journal. 2015;2015:1-13.

Donnou HEV, Boro D, Abode D, Capo-Chichi B, Akpo AB. Design of Vertical Axis Wind Turbine Darrieus Type (H- Darrieus Rotor) of 0.20 KW from the Software Topsolid. Physical Science International Journal. 2020 Dec 31;:52-70.

Awanou CN, Degbey JM, Ahlonsou E. Estimation of the mean wind energy available in Benin (Ex Dahomey). Renewable Energy. 1991 01;1(5-6):845-853.

Houekpoheha M, Kounouhewa B, Tokpohozin B, Awanou C. Estimationde la puissance énergétique éolienne à partir de la distribution de weibull sur la côte béninoise de Cotonou dans le golfe de guinée. Revue des Energies Renouvelables. 2014 September;13(3):489-495.

Akpo A, Damada J, Donnou H, Kounouhewa B, Awanou C. Estimation de la production énergétique d’un aérogénérateur sur un site isolé dans la région côtière du Bénin. Revue des Energies Renouvelables.18(3):457-468.

Salami AA, Ajavon ASA, Kodjo MK, Bedja K. Evaluation of wind potential for an optimum choice of wind turbine generator on the sites of Lomé, Accra, and Cotonou located in the gulf of Guinea. International Journal of Renewable Energy Development. 2016 Nov 04;5(3):211-223.

Abdelhady S, Borello D, Santori S. Economic Feasibility of Small Wind Turbines for Domestic Consumers in Egypt Based on the New Feed-in Tariff. Energy Procedia. 2015 08;75:664-670.

Ajayi O, Fagbenle O, Katende J. Assessment of Wind Power Potential and Wind Electricity Generation Using WECS of Two Sites in South West, Nigeria. International Journal of Energy Science. 2011 January;1(2):78-92.

Gölçek M, Erdem HH, Bayülken A. A Techno-Economical Evaluation for Installation of Suitable Wind Energy Plants in Western Marmara, Turkey. Energy Exploration & Exploitation. 2007 Dec;25(6):407-427.

Ahmed AS. Wind energy as a potential generation source at Ras Benas, Egypt. Renewable and Sustainable Energy Reviews. 2010 Oct;14(8):2167-2173.

Ajayi O, Fagbenle R, Katende J, Ndambuki J, Omole D, Badejo A. Wind Energy Study and Energy Cost of Wind Electricity Generation in Nigeria: Past and Recent Results and a Case Study for South West Nigeria. Energies. 2014 Dec 22;7(12):8508-8534.

Faida H, Saadi J, Khaider M, El Alami S, Monkade M. Etude et Analyse des Données du vent en Vue de Dimensionner un Système de Production d’Energie Eolienne: Cas d’un Site au Nord du Maroc. Revue des Energies Renouvelables. 2010 June;13(3):477-483.

Kassem Y, Gökçekuş H, Çamur H. Economic assessment of renewable power generation based on wind speed and solar radiation in urban regions. Global Journal of Environmental Science and Management. 2018 Oct;4(4).

Gaddada S, Kodicherla SPK. Wind energy potential and cost estimation of wind energy conversion systems (WECSs) for electricity generation in the eight selected locations of Tigray region (Ethiopia). Renewables: Wind, Water, and Solar. 2016 03 17;3(1).

Bagiorgas H, Assimakopoulos M, Theoharopoulos D, Matthopoulos D, Mihalakakou G. Electricity generation using wind energy conversion systems in the area of Western Greece. Energy Conversion and Management. 2007 05;48(5):1640-1655.

Hounguè GH, Kounouhéwa BB, Tokpohozin BN, Houékpohéha MA, Madogni VI, Almar R. Wave Energy Impact on Benin’s Coastline Dynamics, Gulf of Guinea. Current Journal of Applied Science and Technology. 2018 Nov 13;30(4):1-12.

Cahier des villages et quartiers de ville du département de l’Atlantique, Bénin. INSAE; 2016.

Donnou HEV, Akpo AB, Kouchadé CA, Kounouhewa BB, Hounguè GH, Nonfodji GF, Djossou J. Vertical Profile of Wind Diurnal Cycle in the Surface Boundary Layer over the Coast of Cotonou, Benin, under a Convective Atmosphere. Advances in Meteorology. 2019 04 01;2019:1-18.

Akinsanola A, Ogunjobi K, Abolude A, Sarris S, Ladipo K. Assessment of Wind Energy Potential for Small Communities in South-South Nigeria: Case Study of Koluama, Bayelsa State. J Fundam Renewable Energy Appl. 2017 February;7(2):1-6.

Fadare A. A statistical analysis of wind energy potential in Ibadan, Nigeria, based on Weibull distribution function. Pac J Sci Technol. 2008;9(1):110-119.

Koukpémédji A. Sur le potentiel énergétique éolien en milieu tropical: Cas du Bénin. Porto Novo, Bénin: Université d’Abomey-Calavi, Institut de Mathématiques et de Sciences de Physiques; 2015.

Weisser D. A wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function. Renewable Energy. 2003 09;28(11):1803-1812.

Merzouk N, Merzouk M. Estimation du Potentiel Energétique Eolien Utilisable Application au Pompage dans les Hauts Plateaux. Revue des Energies Renouvelables. 2006 January;9(3):155-163.

Gnandji M, Fifatin F, Dubas F, Espanet C, Vianou A. Etude du Potentiel Energétique Eolien Offshore du Bénin. Cotonou, Benin: Colloque International Francophone portant sur l’Energétique et la Mécanique; 2018 November.

Newman J, Klein P. The Impacts of Atmospheric Stability on the Accuracy of Wind Speed Extrapolation Methods. Resources. 2014 01 23;3(1):81-105.

Gualtieri G. Atmospheric stability varying wind shear coefficients to improve wind resource extrapolation: A temporal analysis. Renewable Energy. 2016 03;87:376-390.

Okorie ME, Inambao F, Chiguvare Z. Evaluation of Wind Shear Coefficients, Surface Roughness and Energy Yields over Inland Locations in Namibia. Procedia Manufacturing. 2017;7:630-638.

Morel Aolo S. Etude de l’électrification décentralisée par une microcentrale solaire photovoltaïque: cas de la localité de Koutè, commune de Ségbana. Abomey-Calavi, Bénin: Energies Renouvelables et Systèmes Energétiques, Université d’Abomey-Calavi; 2014.

Adaramola MS, Agelin-Chaab M, Paul SS. Assessment of wind power generation along the coast of Ghana. Energy Conversion and Management. 2014 01;77:61-69.

Udo N, Oluleye A, Ishola K. Investigation of Wind Power Potential over Some Selected Coastal Cities in Nigeria. Innovative Energy & Research. 2017;06(01).




How to Cite

Donnou, H. E. V., N’Gobi, G. K., Kougbéagbédè, H., Hounmenou, G. ., Akpo, A. B. ., & Kounouhewa, B. B. (2021). Study of the Decentralized Electrification by a Micro-Wind Power Plant: Case of Ahouandji Locality in Southern Benin. TH Wildau Engineering and Natural Sciences Proceedings , 1.