A Dynamic Winding Process of Individualized Fibre Reinforcement Structures for Additive Manufacturing in Construction

Authors

DOI:

https://doi.org/10.52825/ocp.v3i.187

Keywords:

Robot based dynamic fibre winding, Dynamic Winding Machine, Textile-Reinforced Concrete

Abstract

The integration of load path compliant fibre reinforcement structures into additive manufactured concrete elements opens up new potential in the field of construction. The new design language made possible by 3D concrete printing requires reinforcement structures to be provided in a highly individual shaped manner. Digital and robot-based production processes make it possible to produce on-site, on demand, fully automated and just-in-time. In this paper, a concept for an on-site ready fibre reinforcement production is presented. Based on previous works a Dynamic Winding Machine (DWM) for the on-demand production of individualizable reinforcement strands is developed. The concept and technical functionalities of the machine are presented in detail. The functionality is validated based on the production of single reinforcement bars as well as the production of entire, additively manufactured and reinforced concrete structures. With an industrial robot and adjusted end effectors, freely shaped reinforcement structures can be produced automatically. Different concepts for the use of the DWM with mobile robots are discussed. Due to the flexibility of the process, both filigree reinforcement structures, e.g. for use in particle bed printing, and large structures, e.g. for combination with Shotcrete 3D Printing, can be produced.

Downloads

Download data is not yet available.

References

L. Huang, G. Krigsvoll, F. Johansen, Y. Liu, and X. Zhang, “Carbon emission of global construction sector,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1906– 1916, 2018, ISSN: 13640321. DOI: https://doi.org/10.1016/j.rser.2017.06.001. DOI: https://doi.org/10.1016/j.rser.2017.06.001

H. Kloft, C. Gehlen, K. D¨orfler, et al., “TRR 277: Additive manufacturing in construction,” Civil Engineering Design, vol. 3, no. 4, pp. 113–122, 2021, ISSN: 2625-073X. DOI: https://doi.org/10.1002/cend.202100026. DOI: https://doi.org/10.1002/cend.202100026

H. Kloft, M. Empelmann, N. Hack, E. Herrmann, and D. Lowke, “Reinforcement strategies for 3D–concrete–printing,” Civil Engineering Design, vol. 2, no. 4, pp. 131–139, 2020, ISSN: 2625-073X. DOI: https://doi.org/10.1002/cend.202000022. DOI: https://doi.org/10.1002/cend.202000022

S. Gantner, T.-N. Rothe, C. H¨uhne, and N. Hack, “Reinforcement strategies for additive manufacturing in construction based on dynamic fibre winding: Concepts and initial case studies,” Open Conference Proceedings, vol. 1, pp. 45–59, 2022. DOI: https://doi.org/10.52825/ocp.v1i.78. DOI: https://doi.org/10.52825/ocp.v1i.78

T. Cadenazzi, G. Dotelli, M. Rossini, S. Nolan, and A. Nanni, “Cost and environmental analyses of reinforcement alternatives for a concrete bridge,” Structure and Infrastructure Engineering, vol. 16, no. 4, pp. 787–802, 2020, ISSN: 1573-2479. DOI: https://doi.org/10.1080/15732479.2019.1662066. DOI: https://doi.org/10.1080/15732479.2019.1662066

J. G. Backes, P. Del Rosario, A. Luthin, and M. Traverso, “Comparative life cycle assessment of end-of-life scenarios of carbon-reinforced concrete: A case study,” Applied Sciences, vol. 12, no. 18, p. 9255, 2022. DOI: https://doi.org/10.3390/app12189255. DOI: https://doi.org/10.3390/app12189255

S. Reichenbach, P. Preinstorfer, M. Hammerl, and B. Kromoser, “A review on embedded fibre-reinforced polymer reinforcement in structural concrete in europe,” Construction and Building Materials, vol. 307, p. 124 946, 2021, ISSN: 09500618. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124946. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124946

V. Mechtcherine, R. Buswell, H. Kloft, et al., “Integrating reinforcement in digital abrication with concrete: A review and classification framework,” Cement and Concrete Composites, vol. 119, p. 103 964, 2021, ISSN: 09589465. DOI: https://doi.org/10.1016/j.cemconcomp.2021.103964. DOI: https://doi.org/10.1016/j.cemconcomp.2021.103964

E. Ivaniuk, S. M¨uller, T. Neef, and V. Mechtcherine, “Strategies for integrating reinforcement into 3D concrete printing at the tu dresden,” Open Conference Proceedings, vol. 1, pp. 23–34, 2022. DOI: https://doi.org/10.52825/ocp.v1i.73. DOI: https://doi.org/10.52825/ocp.v1i.73

T. Neef and V. Mechtcherine, “Simultaneous integration of continuous mineral-bonded carbon reinforcement into additive manufacturing with concrete,” Open Conference Proceedings, vol. 1, pp. 73–81, 2022. DOI: https://doi.org/10.52825/ocp.v1i.80. DOI: https://doi.org/10.52825/ocp.v1i.80

Rothe et al. | Open Conf Proc 3 (2023) ”Visions and Strategies for Reinforcing Additively Manufactured Constructions” [11] P. Penzel, M. May, L. Hahn, et al., “Bond modification of carbon rovings through profiling,” Materials (Basel, Switzerland), vol. 15, no. 16, 2022, ISSN: 1996-1944. DOI: https://doi.org/10.3390/ma15165581. DOI: https://doi.org/10.3390/ma15165581

D. Wohlfahrt, H. F. M. Peller, S. Müller, N. Modler, and V. Mechtcherine, “Investigation of helix-pultruded CFRP rebar geometry variants for carbon-reinforced concrete structures,” Polymers, vol. 15, no. 15, p. 3285, 2023. DOI: https://doi.org/10.3390/polym15153285. DOI: https://doi.org/10.3390/polym15153285

D. Friese, M. Scheurer, L. Hahn, T. Gries, and C. Cherif, “Textile reinforcement structures for concrete construction applications—-a review,” Journal of Composite Materials, vol. 56, no. 26, pp. 4041–4064, 2022, ISSN: 0021-9983. DOI: https://doi.org/10.1177/00219983221127181. DOI: https://doi.org/10.1177/00219983221127181

N. Minsch, M. M¨uller, T. Gereke, A. Nocke, and C. Cherif, “3D truss structures with coreless 3D filament winding technology,” Journal of Composite Materials, vol. 53, no. 15, pp. 2077–2089, 2019, ISSN: 0021-9983. DOI: https://doi.org/10.1177/0021998318820583. DOI: https://doi.org/10.1177/0021998318820583

D. Friese, L. Hahn, and C. Cherif, “Biologically inspiried load adapted 3D textile reinforcement structures,” Materials Science Forum, vol. 1063, pp. 101–110, 2022. DOI: https://doi.org/10.4028/p-8oa718. DOI: https://doi.org/10.4028/p-8oa718

D. Friese, J. Mersch, L. Hahn, and C. Cherif, “Development of a yarn guiding and impregnation technology for robot-asissted fiber manufacturing of 3D textile reinforcement structures,” in 11th International Conference on Fiber-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2023), Kent A. Harries, Daniel C.T. Cardoso, and Flavio A. Silva, Eds., Rio de Janeiro, Brazil, 2023. DOI: https://doi.org/10.5281/zenodo.8164096.

M. Scheurer, G. Dittel, and T. Gries, “Potential for the integration of continuous fiber-based reinforcements in digital concrete production,” in Second RILEM International Conferenceon Concrete and Digital Fabrication, ser. RILEM Bookseries, F. P. Bos, S. S. Lucas, R. J. Wolfs, and T. A. Salet, Eds., vol. 28, Cham: Springer International Publishing, 2020, pp. 701–711, ISBN: 978-3-030-49915-0. DOI: https://doi.org/10.1007/978-3-030-49916-7_70. DOI: https://doi.org/10.1007/978-3-030-49916-7_70

G. Dittel, M. Scheurer, S. Dringenberg, J. V. Jitton, and T. Gries, “Digital concrete production with vertical textile reinforcement,” Open Conference Proceedings, vol. 1, pp. 35–43, 2022. DOI: https://doi.org/10.52825/ocp.v1i.77. DOI: https://doi.org/10.52825/ocp.v1i.77

M. Prado, M. D¨orstelmann, T. Schwinn, A. Menges, and J. Knippers, “Coreless filament winding,” in Robotic Fabrication in Architecture, Art and Design 2014, W. McGee and M.Ponce de Leon, Eds., Cham: Springer International Publishing, 2014, pp. 275–289, ISBN: 978-3-319-04662-4. DOI: https://doi.org/10.1007/978-3-319-04663-1_19. DOI: https://doi.org/10.1007/978-3-319-04663-1_19

R. La Magna, F. Waimer, and J. Knippers, “Coreless winding and assembled core – novel fabrication approaches for FRP based components in building construction,” Construction and Building Materials, vol. 127, pp. 1009–1016, 2016, ISSN: 09500618. DOI: https://doi.org/10.1016/j.conbuildmat.2016.01.015. DOI: https://doi.org/10.1016/j.conbuildmat.2016.01.015

L. Vasey, B. Felbrich, M. Prado, B. Tahanzadeh, and A. Menges, “Physically distributed multi-robot coordination and collaboration in construction,” Construction Robotics, vol. 4, no. 1-2, pp. 3–18, 2020, ISSN: 2509-811X. DOI: https://doi.org/10.1007/s41693-020-00031-y. DOI: https://doi.org/10.1007/s41693-020-00031-y

P. Mindermann, S. Bodea, A. Menges, and G. T. Gresser, “Development of an impregnation end-effector with fiber tension monitoring for robotic coreless filament winding,” Processes, vol. 9, no. 5, p. 806, 2021. DOI: https://doi.org/10.3390/pr9050806. DOI: https://doi.org/10.3390/pr9050806

L. Hass, F. P. Bos, and T. Salet, “Characterizing the bond properties of automatically placed helical reinforcement in 3D printed concrete,” Construction and Building Materials, vol. 355, p. 129 228, 2022, ISSN: 09500618. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129228. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129228

N. Freund, I. Dressler, and D. Lowke, “Studying the bond properties of vertical integratedshort reinforcement in the shotcrete 3D printing process,” in Second RILEM International Conference on Concrete and Digital Fabrication, ser. RILEM Bookseries, F. P. Bos, S. S.Lucas, R. J.Wolfs, and T. A. Salet, Eds., vol. 28, Cham: Springer International Publishing,2020, pp. 612–621, ISBN: 978-3-030-49915-0. DOI: https://doi.org/10.1007/978-3-030-49916-7_62. DOI: https://doi.org/10.1007/978-3-030-49916-7_62

K. D¨orfler, G. Dielemans, L. Lachmayer, et al., “Additive manufacturing using mobile robots: Opportunities and challenges for building construction,” Cement and Concrete

Research, vol. 158, p. 106 772, 2022, ISSN: 00088846. DOI: https://doi.org/10.1016/j.cemconres.2022.106772. DOI: https://doi.org/10.1016/j.cemconres.2022.106772

M. E. Tiryaki, X. Zhang, and Q.-C. Pham, “Printing-while-moving: A new paradigm forlarge-scale robotic 3D printing,” in 2019 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), [Piscataway, New Jersey]: IEEE, 2019, pp. 2286–2291, ISBN: 978-1-7281-4004-9. DOI: https://doi.org/10.1109/IROS40897.2019.8967524. DOI: https://doi.org/10.1109/IROS40897.2019.8967524

L. Lachmayer, T. Recker, G. Dielemans, K. D¨orfler, and A. Raatz, “Autonomous sensingand localization of a mobile robot for multi-step additive manufacturing in construction,”The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIII-B1-2022, pp. 453–458, 2022. DOI: 10.5194/isprs-archives-XLIII-B1-2022-453-2022. DOI: https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-453-2022

K. D¨orfler, N. Hack, T. Sandy, et al., “Mobile robotic fabrication beyond factory conditions: Case study mesh mould wall of the DFAB house,” Construction Robotics, vol. 3, no. 1-4, pp. 53–67, 2019, ISSN: 2509-811X. DOI: https://doi.org/10.1007/s41693-019-00020-w. DOI: https://doi.org/10.1007/s41693-019-00020-w

N. Melenbrink, J. Werfel, and A. Menges, “On-site autonomous construction robots: Towards unsupervised building,” Automation in Construction, vol. 119, p. 103 312, 2020, ISSN: 09265805. DOI: https://doi.org/10.1016/j.autcon.2020.103312. DOI: https://doi.org/10.1016/j.autcon.2020.103312

S. Bhat, M. Kalthoff, P. Shroeder, T. Gries, and T. Matschei, “Textile reinforced concrete for free-form concrete elements: Influence of the binding type of textile reinforcements on the drapability for manufacturing double-curved concrete elements,” MATEC Web of Conferences, vol. 364, p. 05 019, 2022. DOI: https://doi.org/10.1051/matecconf/202236405019. DOI: https://doi.org/10.1051/matecconf/202236405019

N. Hack, M. Bahar, C. H¨uhne, et al., “Development of a robot-based multi-directional dynamic fiber winding process for additive manufacturing using shotcrete 3D printing,” Fibers, vol. 9, no. 6, p. 39, 2021. DOI: https://doi.org/10.3390/fib9060039. DOI: https://doi.org/10.3390/fib9060039

Dambrosio, N., Zechmeister, C., Bodea, S., Koslowski, V., Gil-P ´ erez, M., Rongen, B., Knippers, J., Menges, A., “Buga fibre pavilion: Towards an architectural application of novel fiber composite building systems,” in Ubiquity and autonomy, K. Bieg, D. Briscoe, and C. Odom, Eds., [United States]: Association for Computer Aided Design in Architecture (ACADIA), 2019, pp. 140–149, ISBN: 978-0578591797. DOI: https://doi.org/10.52842/conf.acadia.2019.140

C. M¨oller, H. C. Schmidt, P. Koch, et al., “Machining of large scaled CFRP-parts with mobile cnc-based robotic system in aerospace industry,” Procedia Manufacturing, vol. 14, pp. 17–29, 2017, ISSN: 23519789. DOI: https://doi.org/10.1016/j.promfg.2017.11.003. DOI: https://doi.org/10.1016/j.promfg.2017.11.003

S. Gantner, P. Rennen, T. Rothe, C. H¨uhne, and N. Hack, “Core winding: Force-flow oriented fibre reinforcement in additive manufacturing with concrete,” in Third RILEM International Conference on Concrete and Digital Fabrication, ser. RILEM Bookseries, R.Buswell, A. Blanco, S. Cavalaro, and P. Kinnell, Eds., vol. 37, Cham: Springer International Publishing, 2022, pp. 391–396, ISBN: 978-3-031-06115-8. DOI: https://doi.org/10.1007/978-3-031-06116-5_58. DOI: https://doi.org/10.1007/978-3-031-06116-5_58

T. Rothe, J. P¨osch, S. Gantner, N. Hack, and C. H¨uhne, “Optimization of tensile properties and bond behaviour to concrete of fibre reinforcement strands produced within a dynamic fibre winding process,” in 11th International Conference on Fiber-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2023), Kent A. Harries, Daniel C.T. Cardoso, and Flavio A. Silva, Eds., Rio de Janeiro, Brazil, 2023. DOI: https://doi.org/10.5281/zenodo.8133237.

S. Solyom and G. L. Bal´azs, “Analytical and statistical study of the bond of FRP bars with different surface characteristics,” Composite Structures, vol. 270, p. 113 953, 2021, ISSN: 02638223. DOI: https://doi.org/10.1016/j.compstruct.2021.113953. DOI: https://doi.org/10.1016/j.compstruct.2021.113953

A. Pritschow, “Zum Verbundverhalten von CFK-Bewehrungsst¨aben in Bauteilen aus ultrahochfestem Beton,” Dissertation, Universit ät Stuttgart, Stuttgart, 2016-05-03.

L. Malvar, “Tensile and bond properties of GFRP reinforcing bars,” ACI Materials Journal, vol. 92, no. 3, 1995, ISSN: 0889-325X. DOI: https://doi.org/10.14359/1120. DOI: https://doi.org/10.14359/1120

I. Mai, L. Brohmann, N. Freund, et al., “Large particle 3D concrete printing—a green and viable solution,” Materials, vol. 14, no. 20, p. 6125, 2021. DOI: https://doi.org/10.3390/ma14206125. DOI: https://doi.org/10.3390/ma14206125

Published

2023-12-15

How to Cite

Rothe, T., Gantner, S., Hack, N., & Hühne, C. (2023). A Dynamic Winding Process of Individualized Fibre Reinforcement Structures for Additive Manufacturing in Construction. Open Conference Proceedings, 3. https://doi.org/10.52825/ocp.v3i.187

Conference Proceedings Volume

Section

Contributions to the symposium "Visions and Strategies for Reinforcing Additively Manufactured Constructions 2023"
Received 2023-04-12
Accepted 2023-10-10
Published 2023-12-15

Funding data