First Investigations on WAAM-Printed Adhesive Sockets for Reinforcement Connections

Authors

DOI:

https://doi.org/10.52825/ocp.v7i.2788

Keywords:

Additive Manufacturing Construction, WAAM, Concrete Components, Reinforcement, Injection Mortar

Abstract

Additive manufacturing (AM) is attracting increasing interest in the construction sector due to its potential for automation and its ability to produce complex components. The potential of AM, particularly in the free-form design of concrete components such as beams, columns and force flow-optimised nodes, depends largely on solutions for their reinforcement. As a suitable solution for reinforcement integration, robot-assisted additive wire and arc manufacturing (WAAM) combines a high degree of automation and geometric freedom with a high deposition rate and tensile strength.

In this study, the WAAM process is investigated using the example of welded connection elements for reinforcing bars, accompanied by centric tensile tests on representative WAAM specimens and pull-out tests on reinforcing bars bonded into different sockets with two different injection mortars. In comparison to this novel approach of connecting steel components with reinforcing bars by bonding sockets produced using WAAM, comparable connection methods such as bolting and welding of the reinforcing bars are investigated.

The possible applications of the connection technology presented range from steel inserts in connecting elements and brackets to the connection of segmented rebars in AM concrete components.

Downloads

Download data is not yet available.

References

[1] Buchanan, C. and Gardner, L., “Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges,” Engineering Structures, vol. 180, pp. 332–348, 2019.

[2] Delgado Camacho, D., Clayton, P., O'Brien, W. J., Seepersad, C., Juenger, M., Ferron, R., and Salamone, S., “Applications of additive manufacturing in the construction industry – A forward-looking review,” Automation in Construction, vol. 89, pp. 110–119, 2018.

[3] Evans, S. I., Wang, J., Qin, J., He, Y., Shepherd, P., and Ding, J., “A review of WAAM for steel construction – Manufacturing, material and geometric properties, design, and fu-ture directions,” Structures, vol. 44, pp. 1506–1522, 2022.

[4] Kanyilmaz, A., Demir, A. G., Chierici, M., Berto, F., Gardner, L., Kandukuri, S. Y., Kassabian, P. et al., “Role of metal 3D printing to increase quality and resource-efficiency in the construction sector,” Additive Manufacturing, vol. 50, p. 102541, 2022.

[5] Gardner, L., “Metal additive manufacturing in structural engineering – review, advances, opportunities and outlook,” Structures, vol. 47, pp. 2178–2193, 2023.

[6] Reimann, J., Henckell, P., Ali, Y., Hammer, S., Rauch, A., Hildebrand, J., and Berg-mann, J. P., “Production of Topology-optimised Structural Nodes Using Arc-based, Addi-tive Manufacturing with GMAW Welding Process,” J. Civ. Eng. Constr., vol. 10, no. 2, pp. 101–107, 2021.

[7] Feldmann, M., Kühne, R., Citarelli, S., Reisgen, U., Sharma, R., and Oster, L., “3D‐Drucken im Stahlbau mit dem automatisierten Wire Arc Additive Manufacturing,” Stahl-bau, vol. 88, no. 3, pp. 203–213, 2019.

[8] Laghi, V., Babovic, N., Benvenuti, E., and Kloft, H., “Blended structural optimization of steel joints for Wire-and-Arc Additive Manufacturing,” Engineering Structures, vol. 300, p. 117141, 2024

[9] V. Mechtcherine, J. Grafe, V. N. Nerella, E. Spaniol, M. Hertel, and U. Füssel, “3D-printed steel reinforcement for digital concrete construction – Manufacture, mechanical properties and bond behaviour,” Constr. Build. Mater., vol. 179, pp. 125–137,2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.05.202.

[10] Müller, J., Grabowski, M., Müller, C., Hensel, J., Unglaub, J., Thiele, K., Kloft, H., and Dilger, K., “Design and Parameter Identification of Wire and Arc Additively Manufactured (WAAM) Steel Bars for Use in Construction,” Metals, vol. 9, no. 7, p. 725, 2019, doi: 10.3390/met9070725

[11] Kloft, H., Empelmann, M., Hack, N., Herrmann, E., and Lowke, D., “Reinforcement strategies for 3D‐concrete‐printing,” Civil Engineering Design, vol. 2, no. 4, pp. 131–139, 2020, doi: https://doi.org/10.1002/cend.202000022

[12] Tischner, K., Rappl, S., Riegger, F., Strasser, A., Osterminski, K., Kraenkel, T., Baehr, S., Zaeh, M. F., and Gehlen, C., “Bond Behavior of WAAM Reinforcements in Compari-son to Conventional Steel Reinforcements,” Construction Materials, vol. 3, no. 2, pp. 217–232, 2023, doi: https://doi.org/10.3390/constrmater3020014

[13] Institut für Stahlbetonbewehrung e. V. (ISB), Schweißen von Betonstahl nach DIN EN ISO 17660:2007 und DVS RiLi 1708:2009. Berlin: Ernst & Sohn, 2022.

[14] DIN EN ISO 9606-1:2017-12, Prüfung von Schweißern_- Schmelzschweißen_- Teil_1: Stähle (ISO_9606-1:2012, einschließlich Cor_1:2012 und Cor_2:2013); Deutsche Fas-sung EN_ISO_9606-1:2017.

[15] DIN EN ISO 14731:2019-07, Schweißaufsicht_- Aufgaben und Verantwortung (ISO_14731:2019); Deutsche Fassung EN_ISO_14731:2019.

[16] DIN EN 1993-1-8:2025-04, Eurocode_3_- Bemessung und Konstruktion von Stahlbau-ten_- Teil_1-8: Anschlüsse; Deutsche Fassung EN_1993-1-8:2024.

[17] DIN EN 1090-2:2018-09, Ausführung von Stahltragwerken und Aluminiumtragwerken_- Teil_2: Technische Regeln für die Ausführung von Stahltragwerken; Deutsche Fassung EN_1090-2:2018.

[18] EAD 330499-00-0601, “Bonded Fasteners for Use in Concrete”, European Organisation for Technical Assessment, 2017.

[19] DIN EN 1992-4:2019-04, Eurocode_2_- Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken_- Teil_4: Bemessung der Verankerung von Befestigungen in Beton; Deutsche Fassung EN_1992-4:2018.

[20] Spieth, H. A. and Eligehausen, R., “Bewehrungsanschlüsse mit nachträglich eingemörtel-ten Bewehrungsstäben,” Beton und Stahlbetonbau, vol. 97, no. 9, pp. 445–459, 2002, doi: 10.1002/best.200202130

[21] Feistel, G., “Bewehrungsanschlüsse mit nachträglich eingemörtelten Bewehrungsstäben,” DIBT Mitteilungen, vol. 38, no. 6, pp. 174–178, 2007, doi: 10.1002/dibt.200730048

[22] Fuchs, W., “Nachträglich eingemörtelte Bewehrungsstäbe,” 2023. In 2024 BetonKalen-der, ed. Konrad Bergmeister, Frank Fingerloos, and Johann Dietrich Wörner, 429–60: Wiley, doi: 10.1002/9783433611494.ch5

[23] Wörle, P., Appl, J., and Genesio, G., “Bewehrungsanschlüsse für momententragfähige Verbindungen nach EOTA TR 069,” Beton und Stahlbetonbau, vol. 115, no. 11, pp. 887–896, 2020, doi: 10.1002/best.202000057

[24] Blochwitz, R., “Verbunddübelsysteme unter dauerhafter Lasteinwirkung,” Dissertation, Univerität Stuttgart, 2019, doi: http://dx.doi.org/10.18419/opus-10337

[25] Lincoln Electric, Supramig® Ultra. https://ch-deliv-ery.lincolnelectric.com/api/public/content/618bbd37e18d4adb9d7892001be5e00b?v=eeec56f9, (accessed July 31, 2025).

[26] Max Frank GmbH, Max Frank Coupler: Schraubanschluss. https://www.maxfrank.com/wAssets/docs/products/brochures/MAX-FRANK-coupler-schraubanschluss-BR-DEDE.pdf (accessed July 31, 2025).

[27] ICC Evaluation Service, L. L., ICC-ES Evaluation Report: ESR-1990, 2024. https://fiproductmedia.azureedge.net/media/Certification%20Documents/ICC%20Evaluation%20Report/fischer/ZD_ICC_01_FIS-EM-PLUS_EN_V3.pdf (accessed July 31, 2025).

[28] Deutsches Institut für Bautechnik (DIBt), Allgemeine Bauartgenehmigung: fischer Injekti-onssystem FIS EM Plus zur Verwendung in unbeschichteten FD-/FDE- Betonflächen in LAU-Anlagen: Nummer Z-74.8-199, 2020. https://fiproductmedia.azureedge.net/media/Certification%20Documents/Country%20Specific%20Approvals/fischer/ZD_Z_01_WHG-FIS-EM-PLUS_F_DE_V1.pdf (accessed Ju-ly 31, 2025).

[29] Deutsches Institut für Bautechnik (DIBt), Europäische Technische Bewertung: ETA-10/0388: Bewehrungsanschluss mit Upat UPM 44, Injektionssystem für nachträgliche Bewehrungsanschlüsse, 2016. https://fiproductmedia.azureedge.net/media/Certification%20Documents/ETA%20European%20Technical%20Assessment/UPAT/ZD_ETAB_U_10-0388_SDE_AIP_V1.pdf (ac-cessed July 31, 2025).

[30] MFPA Leipzig GmbH, Gutachterliche Stellungnahme Nr. GS 3.2/18-297-1: Upat Injekti-onssystem UPM 44: Brandschutztechnische Bewertung der charakteristischen Stahl-spannungen unter Zugbeanspruchung in Porenbeton in Anlehnung an Technical Report TR 020 „Evaluation of Anchorages in Concrete concerning Resistance to Fire" https://fiproductmedia.azureedge.net/media/Certification%20Documents/Test%20Report%20Fire%20Protection/UPAT/ZD_B_04_UPM44_U_SDE_AIP_V1.pdf (accessed July 31, 2025).

[31] UHU GmbH, Produktbeschreibung, Technische Spezifikationen. https://www.uhu.com/de-de/produkte/uhu-plus-endfest-binder-harter-blister-33-g-d#Unterlagen (accessed July 31, 2025).

[32] DIN EN 1465:2009-07, Klebstoffe_- Bestimmung der Zugscherfestigkeit von Überlap-pungsklebungen; Deutsche Fassung EN_1465:2009.

Downloads

Published

2025-12-17

How to Cite

Ledderose, L., & Kloft, H. (2025). First Investigations on WAAM-Printed Adhesive Sockets for Reinforcement Connections. Open Conference Proceedings, 7. https://doi.org/10.52825/ocp.v7i.2788

Conference Proceedings Volume

Section

Contributions to the symposium "Visions and Strategies for Reinforcing Additively Manufactured Constructions 2025"
Received 2025-06-15
Accepted 2025-11-05
Published 2025-12-17

Funding data