DREAM-LLMs at LLMs4OL 2025 Task B: A Deliberation-Based Reasoning Ensemble Approach With Multiple Large Language Models for Term Typing in Low-Resource Domains

Authors

DOI:

https://doi.org/10.52825/ocp.v6i.2892

Keywords:

Large Language Models, Ontology Learning, Term Typing Prediction, Deliberation-Based Reasoning, Low-Resource Domains

Abstract

The LLMs4OL Challenge at ISWC 2025 aims to advance the integration of Large Language Models (LLMs) and Ontology Learning (OL) across four key tasks: (1) Text2Onto, (2) Term Typing, (3) Taxonomy Discovery, and (4) Non-Taxonomic Relation Extraction. Our work focuses on the Term Typing Prediction task, where prompting LLMs has shown strong potential. However, in low-resource domains, relying on a single LLM is often insufficient due to domain-specific knowledge gaps and limited exposure to specialized terminology, which can lead to inconsistent and biased predictions. To address this challenge, we propose DREAM-LLMs: a Deliberation-based Reasoning Ensemble Approach with Multiple Large Language Models. Our method begins by crafting few-shot prompts using training examples and querying four advanced LLMs independently: ChatGPT-4o, Claude Sonnet 4, DeepSeek-V3, and Gemini 2.5 Pro. Each model outputs a predicted label along with a brief justification. To reduce model-specific bias, we introduce a deliberation step, in which one LLM reviews the predictions and justifications from the other three to produce a final decision. We evaluate DREAM-LLMs on three low-resource domain datasets: OBI, MatOnto, and SWEET using F1-score as the evaluation metric. The results, 0.908 for OBI, 0.568 for MatOnto, and 0.593 for SWEET, demonstrate that our ensemble strategy significantly improves performance, highlighting the promise of collaborative LLM reasoning in low-resource environments.

Downloads

Download data is not yet available.

References

S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu, “Unifying Large Language Models and Knowledge Graphs: A Roadmap,” IEEE Transactions on Knowledge and Data Engineering, vol. 36, no. 7, pp. 3580–3599, Jul. 2024, arXiv:2306.08302 [cs], ISSN : 1041-4347, 1558-2191, 2326-3865. DOI : 10 . 1109 / TKDE . 2024 . 3352100. [Online]. Available: http://arxiv.org/abs/2306.08302 (visited on 08/06/2025).

H. Babaei Giglou, J. D’Souza, A. C. Aioanei, N. Mihindukulasooriya, and S. Auer, “Llms4ol 2025 overview: The 2nd large language models for ontology learning challenge,” Open Conference Proceedings, 2025.

OpenAI, A. Hurst, A. Lerer, et al., GPT-4o System Card, arXiv:2410.21276 [cs], Oct. 2024. DOI : 10.48550/arXiv.2410.21276. [Online]. Available: http://arxiv.org/abs/2410. 21276 (visited on 08/06/2025).

Anthropic, System Card: Claude Opus 4 & Claude Sonnet 4, May 2025. [Online]. Available:https://www-cdn.anthropic.com/07b2a3f9902ee19fe39a36ca638e5ae987bc64dd.pdf.

DeepSeek-AI, A. Liu, B. Feng, et al., DeepSeek-V3 Technical Report, arXiv:2412.19437 [cs], Feb. 2025. DOI : 10.48550/arXiv.2412.19437. [Online]. Available: http://arxiv.org/abs/2412.19437 (visited on 08/06/2025).

G. Comanici, E. Bieber, M. Schaekermann, et al., Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multimodality, Long Context, and Next Generation Agentic Capabilities, arXiv:2507.06261 [cs], Jul. 2025. DOI : 10 . 48550 / arXiv . 2507 . 06261. [Online]. Available: http://arxiv.org/abs/2507.06261 (visited on 08/06/2025).

H. B. Giglou, J. D’Souza, and S. Auer, LLMs4OL: Large Language Models for Ontology Learning, arXiv:2307.16648 [cs], Aug. 2023. DOI : 10.48550/arXiv.2307.16648. [Online]. Available: http://arxiv.org/abs/2307.16648 (visited on 07/08/2025).

H. B. Giglou, J. D’Souza, and S. Auer, LLMs4OL 2024 Overview: The 1st Large Language Models for Ontology Learning Challenge, arXiv:2409.10146 [cs], Sep. 2024. DOI : 10.48550/arXiv.2409.10146. [Online]. Available: http://arxiv.org/abs/2409.10146 (visited on 07/08/2025).

A. Alcoforado, T. P. Ferraz, L. H. Okamura, et al., “From Random to Informed Data Selection: A Diversity-Based Approach to Optimize Human Annotation and Few-Shot Learning,” in Proceedings of the 16th International Conference on Computational Processing of Portuguese - Vol. 1, P. Gamallo, D. Claro, A. Teixeira, et al., Eds., Santiago de Compostela,

Galicia/Spain: Association for Computational Lingustics, Mar. 2024, pp. 492–502. [Online]. Available: https://aclanthology.org/2024.propor-1.50/ (visited on 08/08/2025).

Downloads

Published

2025-10-01

How to Cite

Wiangnak, P., Prabhong, T., Phuttaamart, T., Kertkeidkachorn, N., & Shirai, K. (2025). DREAM-LLMs at LLMs4OL 2025 Task B: A Deliberation-Based Reasoning Ensemble Approach With Multiple Large Language Models for Term Typing in Low-Resource Domains. Open Conference Proceedings, 6. https://doi.org/10.52825/ocp.v6i.2892

Conference Proceedings Volume

Section

LLMs4OL 2025 Task Participant Short Papers