ELLMO at LLMs4OL 2025 Tasks A and D: LLM-Based Term, Type, and Relationship Extraction

Authors

DOI:

https://doi.org/10.52825/ocp.v6i.2897

Keywords:

Term Extraction, Type Extraction, Relationship Discovery, LLMs4OL Challenge, Ontology Construction

Abstract

This paper presents an approach to building ontologies using Large Language Models (LLMs), addressing the need in many domains for quality knowledge data extraction from vast stores of text data. In particular, we focus on extracting terms and types from text and discovering relationships between types. This work was completed as part of the 2025 LLMs4OL Challenge, where quality training and testing data, as well as several defined tasks were provided. Many teams competed to produce the best output data across many domains. Our methodology involved prompt engineering, classification, clustering, and vector databases. For the first task, discovering terms and types, we used two methods, (1) directly tailoring prompts to find the terms and types separately and (2) an approach that discovered terms and types simultaneously and then classified them afterwards. For discovering relationships, we used clustering and vector databases to attempt to reduce the number of potential edges; then, we queried the LLM for probabilities for each of the potential edges. While our findings indicate promising results, further work is necessary to address challenges related to processing large datasets, particularly in optimizing efficiency and accuracy.

Downloads

Download data is not yet available.

References

L. Ouyang, J. Wu, X. Jiang et al., Training language models to follow instructions with human feedback, 2022. [Online]. Available: https://arxiv.org/abs/2203.02155, arXiv: 2203.02155 [cs.CL].

T. Brown, B. Mann, N. Ryder et al., "Language models are few-shot learners", Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.

H. Touvron, T. Lavril, G. Izacard et al., "Llama: Open and efficient foundation language models", arXiv preprint arXiv:2302.13971, 2023.

G. Team, T. Mesnard, C. Hardin et al., Gemma: Open Models Based on Gemini Research and Technology, 2024. [Online]. Available: https://arxiv.org/abs/2403.08295, arXiv: 2403.08295 [cs.CL].

J. Wei, X. Wang, D. Schuurmans et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, 2023. [Online]. Available: https://arxiv.org/abs/2201.11903, arXiv: 2201.11903 [cs.CL].

K. M. Jablonka, P. Schwaller, A. Ortega-Guerrero, and B. Smit, "Leveraging large language models for predictive chemistry", Nature Machine Intelligence, vol. 6, no. 2, pp. 161–169, 2024.

H. Inan, K. Upasani, J. Chi et al., Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations, 2023. [Online]. Available: https://arxiv.org/abs/2312.06674, arXiv: 2312.06674 [cs.CL].

P. Lewis, E. Perez, A. Piktus et al., "Retrieval-augmented generation for knowledge-intensive nlp tasks", Advances in neural information processing systems, vol. 33, pp. 9459–9474, 2020.

G. Izacard, and E. Grave, "Leveraging passage retrieval with generative models for open domain question answering", arXiv preprint arXiv:2007.01282, 2020.

M. Nguyen, L. Luo, F. Shiri et al., Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs, 2024. [Online]. Available: https://arxiv.org/abs/2402.11199, arXiv: 2402.11199 [cs.CL].

J. Y. Tsao, R. G. Abbott, D. C. Crowder et al., "AI for technoscientific discovery: A human-inspired architecture", Journal of Creativity, vol. 34, no. 2, p. 100077, 2024.

J. Murdock, C. Buckner, and C. Allen, "Evaluating dynamic ontologies", in International Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Management, 2010, pp. 258–275.

Y. Rebboud, P. Lisena, L. Tailhardat, and R. Troncy, "Benchmarking LLM-based Ontology Conceptualization: A Proposal", in ISWC 2024, 23rd International Semantic Web Conference, 2024.

H. Babaei Giglou, J. D'Souza, N. Mihindukulasooriya, and S. Auer, "LLMs4OL 2025 Overview: The 2nd Large Language Models for Ontology Learning Challenge", Open Conference Proceedings, 2025.

S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu, "Unifying Large Language Models and Knowledge Graphs: A Roadmap", IEEE Transactions on Knowledge and Data Engineering, vol. 36, no. 7, pp. 3580-3599, 2024. DOI: 10.1109/TKDE.2024.3352100.

D. Li, and F. Xu, Synergizing Knowledge Graphs with Large Language Models: A Comprehensive Review and Future Prospects, 2024. [Online]. Available: https://arxiv.org/abs/2407.18470, arXiv: 2407.18470 [cs.IR].

L. Yang, H. Chen, Z. Li, X. Ding, and X. Wu, "Give us the facts: Enhancing large language models with knowledge graphs for fact-aware language modeling", IEEE Transactions on Knowledge and Data Engineering, vol. 36, no. 7, pp. 3091–3110, 2024.

K. Cheng, N. K. Ahmed, R. A. Rossi, T. Willke, and Y. Sun, "Neural-symbolic methods for knowledge graph reasoning: A survey", ACM Transactions on Knowledge Discovery from Data, vol. 18, no. 9, pp. 1–44, 2025.

L. N. DeLong, R. F. Mir, and J. D. Fleuriot, "Neurosymbolic AI for reasoning over knowledge graphs: A survey", IEEE Transactions on Neural Networks and Learning Systems, 2024.

R. Du, H. An, K. Wang, and W. Liu, A Short Review for Ontology Learning: Stride to Large Language Models Trend, 2024. [Online]. Available: https://arxiv.org/abs/2404.14991, arXiv: 2404.14991 [cs.IR].

O. Perera, and J. Liu, "Exploring large language models for ontology learning", 2024.

S. Tsaneva, S. Vasic, and M. Sabou, "Llm-driven ontology evaluation: Verifying ontology restrictions with chatgpt", The Semantic Web: ESWC Satellite Events, vol. 2024, 2024.

A. S. Lippolis, M. J. Saeedizade, R. Keskisärkkä et al., Ontology Generation using Large Language Models, 2025. [Online]. Available: https://arxiv.org/abs/2503.05388, arXiv: 2503.05388 [cs.AI].

T. Baldazzi, L. Bellomarini, S. Ceri et al., "Explaining Enterprise Knowledge Graphs with Large Language Models and Ontological Reasoning", in The Provenance of Elegance in Computation-Essays Dedicated to Val Tannen (2024), 2024, pp. 1–1.

R. Amini, S. S. Norouzi, P. Hitzler, and R. Amini, "Towards complex ontology alignment using large language models", in International Knowledge Graph and Semantic Web Conference, 2024, pp. 17–31.

P. Mateiu, and A. Groza, "Ontology engineering with Large Language Models", in 2023 25th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2023, pp. 226-229. DOI: 10.1109/SYNASC61333.2023.00038.

R. M. Bakker, D. L. Di Scala, and M. H. de Boer, "Ontology Learning from Text: an Analysis on LLM Performance", in Proceedings of the 3rd NLP4KGC International Workshop on Natural Language Processing for Knowledge Graph Creation, colocated with Semantics, 2024, pp. 17–19.

N. Fathallah, S. Staab, and A. Algergawy, LLMs4Life: Large Language Models for Ontology Learning in Life Sciences, 2024. [Online]. Available: https://arxiv.org/abs/2412.02035, arXiv: 2412.02035 [cs.AI].

H. B. Giglou, J. D'Souza, and S. Auer, "LLMs4OL: Large Language Models for Ontology Learning", arXiv preprint arXiv:2307.16648, 2023. DOI: 10.48550/arXiv.2307.16648. [Online]. Available: https://arxiv.org/abs/2307.16648.

H. B. Giglou, J. D'Souza, and S. Auer, "LLMs4OL 2024 Overview: The 1st Large Language Models for Ontology Learning Challenge", arXiv preprint arXiv:2409.10146, 2024. DOI: 10.48550/arXiv.2409.10146. [Online]. Available: https://arxiv.org/abs/2409.10146.

P. Kumar Goyal, S. Singh, and U. Shanker Tiwary, "silp_nlp at LLMs4OL 2024 Tasks A, B, and C: Ontology Learning through Prompts with LLMs", Open Conference Proceedings, vol. 4, pp. 31–38, Oct. 2024. DOI: 10.52825/ocp.v4i.2485. [Online]. Available: https://www.tib-op.org/ojs/index.php/ocp/article/view/2485.

M. Sanaei, F. Azizi, and H. Babaei Giglou, "Phoenixes at LLMs4OL 2024 Tasks A, B, and C: Retrieval Augmented Generation for Ontology Learning", Open Conference Proceedings, vol. 4, pp. 39–47, Oct. 2024. DOI: 10.52825/ocp.v4i.2482. [Online]. Available: https://www.tib-op.org/ojs/index.php/ocp/article/view/2482.

H. B. Giglou, J. D'Souza, A. C. Aioanei, N. Mihindukulasooriya, and S. Auer, "LLMs4OL 2025: Large Language Models for Ontology Learning", 2025. [Online]. Available: https://sites.google.com/view/llms4ol2025/home?authuser=0.

MistralAI, "Mistral Small 3.1", Mar. 2025. [Online]. Available: https://mistral.ai/news/mistral-small-3-1.

C. Greyling, "Prompt Tuning, Hard Prompts & Soft Prompts", Jul. 2023. [Online]. Available: https://cobusgreyling.medium.com/prompt-tuning-hard-prompts-soft-prompts-61b6e3e2d0b3.

T. Phuttaamart, N. Kertkeidkachorn, and A. Trongratsameethong, "The Ghost at LLMs4OL 2024 Task A: Prompt-Tuning-Based Large Language Models for Term Typing", Open Conference Proceedings, vol. 4, Oct. 2024. DOI: 10.52825/ocp.v4i.2486.

R. Nordquist, "What Is Syndeton?", 2019. [Online]. Available: https://www.thoughtco.com/what-is-syndeton-1692187.

A. Rojo-Echeburúa, "Few-Shot Prompting: Examples, Theory, Use Cases", 2024. Accessed: 2025-07-07. [Online]. Available: https://www.datacamp.com/tutorials/few-shot-prompting-examples-theory-use-cases.

S. Organization, "LLMs4OL Challenge 2025 Data", https://github.com/sciknoworg/LLMs4OL-Challenge/tree/main/2025, 2025.

Downloads

Published

2025-10-01

How to Cite

Roche, R., Gray, R., Murdock, J., & Crowder, D. C. (2025). ELLMO at LLMs4OL 2025 Tasks A and D: LLM-Based Term, Type, and Relationship Extraction. Open Conference Proceedings, 6. https://doi.org/10.52825/ocp.v6i.2897

Conference Proceedings Volume

Section

LLMs4OL 2025 Task Participant Long Papers

Funding data